Articles | Volume 6, issue 3
https://doi.org/10.5194/se-6-823-2015
https://doi.org/10.5194/se-6-823-2015
Research article
 | 
09 Jul 2015
Research article |  | 09 Jul 2015

Rainfall and human activity impacts on soil losses and rill erosion in vineyards (Ruwer Valley, Germany)

J. Rodrigo Comino, C. Brings, T. Lassu, T. Iserloh, J. M. Senciales, J. F. Martínez Murillo, J. D. Ruiz Sinoga, M. Seeger, and J. B. Ries

Abstract. Vineyards are one of the eco-geomorphological systems most conditioned by human activity in Germany. The vineyards of the Ruwer Valley (Germany) are characterized by high soil erosion rates and rill problems on steep slopes (between 23 and 26°) caused by the increasingly frequent heavy rainfall events as well as deterioration due to incorrect land use managements.

The objective of this paper is to determine and to quantify the hydrological and erosive phenomena in one vineyard in Germany during different seasons and under different management conditions (before, during and after vintage).

For this purpose, a combined methodology was applied. Climatic (rainfall depth distributions and return periods), pedological (soil analysis and classification), geomorphological (sediment movements and rills evolution) and biological (botanic marks on the vines) variables were used on the two experimental plots in the village of Waldrach (Trier, region of Rhineland-Palatinate).

The results showed high infiltration rates (near 100 %) and subsurface flow which were detected by rainfall simulations performed at different times of the year (between September and December). The highest variations of the monitored rills (lateral and frontal movements) were noted before and during vintage, when footsteps occurred concentrated during a short period of time (between September and October). Finally, two maps of soil loss were generated, indicated by botanic marks on the graft union of the vines. 62.5 t ha−1 yr−1 soil loss was registered in the experimental plots of the new vineyards (2 years), while 3.4 t ha−1 yr−1 was recorded in the old one (35 years).