Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.165 IF 4.165
  • IF 5-year value: 4.075 IF 5-year 4.075
  • CiteScore value: 4.28 CiteScore 4.28
  • SNIP value: 1.501 SNIP 1.501
  • SJR value: 1.060 SJR 1.060
  • IPP value: 4.21 IPP 4.21
  • h5-index value: 29 h5-index 29
  • Scimago H index value: 27 Scimago H index 27
Volume 1, issue 1
Solid Earth, 1, 61-69, 2010
https://doi.org/10.5194/se-1-61-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
Solid Earth, 1, 61-69, 2010
https://doi.org/10.5194/se-1-61-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  01 Jul 2010

01 Jul 2010

Rheological control on the dynamics of explosive activity in the 2000 summit eruption of Mt. Etna

D. Giordano1, M. Polacci2, P. Papale2, and L. Caricchi3,* D. Giordano et al.
  • 1Institut de Ciències de la Terra Jaume Almera (ICTJA), CSIC, c/Lluís Solé Sabarís s/n, 08028 Barcelona, Spain
  • 2Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Via della Faggiola 32, 56126 Pisa, Italy
  • 3Institut des Sciences de la Terre d'Orleans, UMR 6113 CNRS – Universite d'Orleans, 1A rue de la Ferollerie, 45071 Orleans Cedex, France
  • *now at: Department of Earth Sciences, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK

Abstract. In the period from January to June 2000 Mt. Etna exhibited an exceptional explosive activity characterized by a succession of 64 Strombolian and fire-fountaining episodes from the summit South-East Crater. Textural analysis of the eruptive products reveals that the magma associated with the Strombolian phases had a much larger crystal content (>55 vol%) with respect to the magma discharged during the fire-fountain phases (~35 vol%). Rheological modelling shows that the crystal-rich magma falls in a region beyond a critical crystal content where small addition of solid particles causes an exponential increase of the effective magma viscosity. When implemented into the modeling of steady magma ascent dynamics (as assumed for the fire-fountain activity), a large crystal content as the one found for products of Strombolian eruption phases results in a one order of magnitude decrease of mass flow-rate, and in the onset of conditions where small heterogeneities in the solid fraction carried by the magma translate into highly unsteady eruption dynamics. We argue that crystallization on top of the magmatic column during the intermediate phases when magma was not discharged favoured conditions corresponding to Strombolian activity, with fire-fountain activity resuming after removal of the highly crystalline top. The numerical simulations also provide a consistent interpretation of the association between fire-fountain activity and emergence of lava flows from the crater flanks.

Publications Copernicus
Download
Citation
Share