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Abstract. All minerals behave elastically; elasticity is a rhe-
ological property that controls their ability to support stress,
strain, and pressure; controls the nature of acoustic wave
propagation; and influences subsequent plastic (i.e. perma-
nent non-reversible) deformation. All minerals are intrinsi-
cally anisotropic in their elastic properties — that is, they
have directional variations that are related to the configu-
ration of the crystal lattice. This means that the commonly
used mechanical elastic properties that relate elastic stress
to elastic strain, including Young’s modulus (E), Poisson’s
ratio (v), shear modulus (G) and linear compressibility (8),
are dependent on crystallographic direction. In this paper,
we explore the ranges of anisotropy of E, v, G and B in
86 rock-forming minerals, using previously published data,
and show that the range is much wider than commonly as-
sumed. We also explore how these variations (the direction-
ality and the magnitude) are important for fundamental pro-
cesses in the solid earth, including deformation (mechani-
cal) twinning, coherent phase transformations and brittle fail-
ure. We present a new open-source software package (Aniso-
Vis, written in MATLAB), which we use to calculate and
visualise directional variations in elastic properties of rock-
forming minerals. Following previous work in the fields of
chemistry and materials science, we demonstrate that by vi-
sualising the variations in elasticity, we discover previously
unreported properties of rock-forming minerals. For exam-
ple, we show previously unreported directions of negative
Poisson’s ratio and negative linear compressibility, and we
show that the existence of these features is more widespread
(i.e. present in many more minerals) than previously thought.

We illustrate the consequences of intrinsic elastic anisotropy
for the elastic normal and shear strains within «-quartz single
crystal under different applied stress fields; the role of elastic
anisotropy on Dauphiné twinning and the o—f phase trans-
formations in quartz; and stress distributions around voids
of different shapes in talc, lizardite, albite, and sanidine. In
addition to our specific examples, elastic anisotropy in rock-
forming minerals, to the degree that we describe, has signif-
icant consequences for seismic (acoustic) anisotropy, for the
focal mechanisms of earthquakes in anisotropic source re-
gions (e.g. subducting slabs), for a range of brittle and ductile
deformation mechanisms in minerals, and for geobarometry
using mineral inclusions.

1 Introduction

The elastic deformation of rock-forming minerals plays an
important role in many earth processes. The increased avail-
ability of measured or calculated elastic properties of whole
rocks and of specific rock-forming minerals has led to ad-
vances in many fields of earth science, including seismology,
geodynamics, tectonics and metamorphism. Minerals have
long been known to display anisotropy — directional varia-
tions — in their elastic properties (Mandell, 1927; Birch and
Dancroft, 1938; Hearmon, 1946), and these variations show
a close relationship to the symmetry of the mineral crystallo-
graphic structure (e.g. Angel et al., 2012; Timms et al., 2018).
Advances in laboratory methods of measurement (acoustic
velocities, Brillouin scattering, resonant ultrasound) and in
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theoretical techniques for ab initio molecular dynamics cal-
culations has allowed scientists to quantify this anisotropy
for a wide range of rock-forming minerals. For this paper
we have collected 246 published datasets (measurements or
ab initio calculations) of anisotropic elastic properties cover-
ing 86 distinct minerals. Elastic anisotropy is fully described
by a fourth-rank tensor (compliance or stiffness; see below),
and published data are commonly presented in a Voigt ma-
trix format, listing up to 21 independent values (depending
on the crystal symmetry class), whereas elastically isotropic
minerals require only 2 independent values. A key aim of
this paper is to use published data to visualise and explore
elastic anisotropy in rock-forming minerals using familiar
measures, such as Young’s modulus and Poisson’s ratio, but
presented in novel formats and thereby render the increasing
volume of data more transparent to analysis. As noted by pre-
vious authors (Karki and Chennamsetty, 2004; Lethbridge et
al., 2010; Marmier et al., 2010; Gaillac et al., 2016), graphi-
cal depictions of the directional variation of elastic properties
provide new opportunities to relate the quantitative data to
the crystalline structure of the mineral. This in turn allows us
to relate the observed or predicted mechanical and chemical
behaviour of the mineral to specific crystallographic direc-
tions.

It has long been recognised that the velocity of seismic
waves passing through rocks is a direct function of the min-
erals’ elastic properties and their density, expressed through
the Christoffel equation (Christoffel, 1877; Zhou and Green-
halgh, 2004). By considering rocks as polycrystalline ag-
gregates, various workers have modelled seismic velocities
and their anisotropy by combining single mineral elasticity
data with different averaging schemes due to Reuss, Voigt or
Hill (e.g. Mainprice, 1990; Lloyd and Kendall, 2005). This
“rock recipe” approach has improved our understanding of
the composition and structure of the lower crust and man-
tle and provided useful constraints for alternative models for
observed variations in seismic anisotropy beneath continents
and around arcs (e.g. Kern, 1982; Tatham et al., 2008; Healy
et al., 2009).

Inclusions of one mineral or fluid within another host min-
eral have been used to estimate pressures at the time of inclu-
sion or entrapment (Rosenfeld and Chase, 1961; Rosenfeld,
1969; Chopin, 1984; Gillet et al., 1984; van der Molen and
van Roermund, 1986; Angel et al., 2014, 2015). The anal-
ysis critically depends on the elastic properties of the host
mineral and, in the case of solid inclusions, on the inclusion
itself, typically expressed as the bulk and shear moduli (e.g.
Mazzucchelli et al., 2018). The underlying theory is based
on the classical analysis by Eshelby (1957, 1959), who de-
rived the equations for the deformation within an ellipsoidal
inclusion and host due to the imposition of a far-field load.
Most of the work to date has simplified the analysis to as-
sume isotropy in both the inclusion and the host; although,
see Zhang (1998) for a rare exception. Therefore, the full
effects of host minerals and inclusion elastic anisotropy on

Solid Earth, 11, 259-286, 2020

D. Healy et al.: Elastic anisotropy in rock-forming minerals

inclusion-based geobarometry have not yet been rigorously
investigated. Furthermore, fluid inclusions can decrepitate —
i.e. fracture their host and dissipate their fluid — if their inter-
nal overpressure rises to a critical value that exceeds the local
strength of the enclosing grain. The basis for predicting this
behaviour is linear elastic fracture mechanics (LEFM) and
the assumption of elastic isotropy is nearly ubiquitous (e.g.
Lacazette, 1990).

Permanent non-reversible (i.e. plastic) deformation of
minerals is invariably preceded by an elastic response prior
to some form of yield condition being reached. For example,
the elastic properties of minerals are important in the analysis
of brittle cracking at the grain scale. As noted above for the
decrepitation of fluid inclusions, the dominant paradigm for
this analysis is linear elastic fracture mechanics (LEFM) and
the assumption of elastic isotropy. This is important because
faults and fractures in rocks are composite structures, built
by the interaction and coalescence of many smaller cracks
that nucleate at the scale of individual grains, i.e. within
elastically anisotropic crystals. Jaeger and Cook (1969) used
the equations published by Green and Taylor (1939) to con-
sider the stresses developed at the edges of circular holes
in anisotropic rocks. In their analysis (repeated in Pollard
and Fletcher, 2005), they dismissed the significance of elas-
tic anisotropy because the ratio of maximum to minimum
Young’s modulus in rocks is “rarely as high as 2”. Timms
et al. (2010) conducted novel indentation experiments in a
single crystal of quartz and produced a type of cone frac-
ture with variations in opening angle and crack length that
have a trigonal symmetry radiating from the point of con-
tact, and thus demonstrated the key role played by the elastic
anisotropy in controlling the fracture geometry. In the same
study, these authors confirmed that elastic anisotropy plays a
significant role in controlling the focal mechanisms (moment
tensors) of acoustic emission events at the scale of a single
crystal.

Poisson’s ratio appears as a term in, for example, the
equations describing fracture toughness and indentation, and
therefore the precise value of Poisson’s ratio is important.
Poisson’s ratio for isotropic materials is constrained to lie
between 0.5 and — 1, but there are no theoretical limits
for anisotropic materials (Ting and Chen, 2005). Materials
with Poisson’s ratio less than O are termed “auxetic” (Lakes,
1987; Baughman et al.,, 1998a; Prawoto, 2012; Pasternak
and Dyskin, 2012). Fracture toughness and resistance to in-
dentation increase as Poisson’s ratio approaches the lower
(isotropic) limit of —1.0 (Yeganeh-Haeri et al., 1992). In
rock-forming minerals, negative Poisson’s ratios have al-
ready been documented for «-cristobalite (Yeganeh-Haeri
et al., 1992), for quartz at the «—f phase transition (Main-
price and Casey, 1990), for talc (Mainprice et al., 2008), and
for calcite and aragonite (Aouni and Wheeler, 2008). A key
question therefore is to determine if there are other rock-
forming minerals with the same properties and for which spe-
cific crystallographic directions. In a recent review of data on
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Poisson’s ratio in engineering materials, Greaves et al. (2011)
pointed out that the brittle-ductile transition at the grain scale
is also a function of the elastic properties, and it is therefore
likely dependent on direction in strongly anisotropic materi-
als.

Elastic properties, and anisotropy, are also known to in-
fluence the “ductile” or plastic deformation of minerals, and
they have a role in twinning, crystal plasticity (dislocation
creep) and phase transformations (e.g. Tullis, 1970; Chris-
tian and Mahajan, 1995; Timms et al., 2018). The role of
mineral elasticity is also important for the inhomogeneous
distribution of stresses at the grain scale, necessary for driv-
ing pressure solution creep, and it is either treated implic-
itly (e.g. Wheeler, 1992) or explicitly (e.g. Wheeler, 2018).
However, in many studies of rock deformation, minerals are
commonly assumed to be elastically isotropic, scalar mean
values of elastic moduli are used, and/or elastic strains are
assumed to be small relative to plastic deformation, and so
they are ignored (e.g. in visco-plastic self-consistent (VPSC)
code) (Tomé and Lebensohn, 2009).

Given the key role that the elastic behaviour of minerals
plays in so many fundamental geological processes, the sci-
entific need to explore, understand and quantify directional
variations in elastic properties in minerals is clear, as is the
need to develop better approaches for their graphical visual-
isation. It is very difficult to fully appreciate the variations
in elastic properties of a mineral simply by inspection of the
fourth-rank-stiffness (or compliance) tensor, even in reduced
form (Voigt notation; see below). A related requirement is
the ability to investigate the interactions of mineral elastic
anisotropy with imposed pressure, stress or strain. However,
the visualisation and full appreciation of the properties of
second-rank tensors, such as stress and strain, also presents
challenges. No single surface can simultaneously portray the
full anisotropy quantified by the diagonal (normal) and off-
diagonal (shear) components of these tensorial mechanical
quantities. Depictions of strain (or stress) as ellipsoids us-
ing only the principal values as semi-axes fail to quantify
the directional variations in shear strain (or stress) and can-
not easily show examples with mixed positive and negative
principal values. We believe there are clear educational ben-
efits to alternative approaches to visualising stress and strain,
which students commonly find challenging, both conceptu-
ally and from a three-dimensional cognition perspective. For
example, most geological textbooks either illustrate stress or
strain as ellipses/ellipsoids of the normal component only
(with the limitations described above), Mohr diagrams, or
as written out in matrix notation. Furthermore, a common
misnomer that some minerals are isotropic in material prop-
erties undoubtedly stems from the strong emphasis on opti-
cal properties of minerals in most undergraduate mineralogy
courses. Software tools with the capability of comparative vi-
sualisation of various physical properties of minerals in two
and three dimensions, including elastic, optical and acoustic
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anisotropy, have a valuable place in teaching and learning in
mineralogy and in scientific research.

While the number of published datasets for single min-
eral elastic anisotropy continues to increase, there are rel-
atively few publications that have reviewed or synthesised
the available data. Gercek (2007) provided a useful review of
Poisson’s ratio for rocks and included some data for specific
minerals. A more recent review of Poisson’s ratio in rocks
(Ji et al., 2018) also contained data for minerals, but it used
their calculated Voigt—Reuss—Hill average values rather than
quantifying their anisotropy. Workers in the fields of chem-
istry, physics and engineering have published methods and
tools for visualising the elastic anisotropy of various groups
of solid elements and compounds (Karki and Chennamsetty,
2004; Lethbridge et al., 2010; Marmier et al., 2010; Gail-
lac et al., 2016), and these predominantly focus on Poisson’s
ratio. In earth sciences, the MTEX toolbox for the analy-
sis and modelling of crystallographic textures from electron
backscatter diffraction (EBSD) data provides stereographic
projections of elastic properties, such as Young’s modulus,
for single minerals (Hielscher and Schaeben, 2008; Main-
price et al., 2011). The MSAT toolbox for seismic anisotropy
also contains options for plotting the elastic anisotropy of
rocks and minerals (Walker and Wookey, 2012). Both MTEX
and MSAT provide one or more options for displaying the
elastic properties of minerals, but their focus is on the anal-
ysis of textures and seismic (acoustic) velocity anisotropy,
respectively.

In this paper, we seek to quantify and visualise the vari-
ations in elastic properties of rock-forming minerals. In ad-
dition, we present the AnisoVis toolbox, a collection of new
MATLAB scripts based on published methods with a graph-
ical user interface (GUI) to explore the range of elastic
anisotropy displayed by rock-forming minerals. Specifically,
AnisoVis depicts the magnitude of the directional variations
in elastic properties such as Young’s modulus (E), Poisson’s
ratio (v), shear modulus (G) and linear compressibility (8)
using a range of two- and three-dimensional representations
of each elastic property to enable a complete assessment of
the anisotropy in relation to the crystal symmetry. We exploit
the large database of published elastic constants for rock-
forming minerals to systematically assess the anisotropy of
different elastic properties as a function of temperature and
pressure (where possible), giving new insights into the elastic
behaviour of rock-forming minerals. Most of the figures pre-
sented in this paper have been produced from the AnisoVis
toolbox, which is freely available on the web.

A table of symbols and terms used in this paper is pro-
vided in Table 1. Elastic properties are reported in SI units. In
Sect. 2 we review the theoretical basis of linear elasticity and
the formal description of elastic anisotropy in terms of the
key equations. We then describe the methods we use to visu-
alise and quantify the directional variations in elastic prop-
erties for any given mineral. We present two sets of results.
Firstly, we analyse general trends in the database of 86 dis-
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Table 1. List of symbols and terms used in this paper, together with
their default units (if any).

Quantity Symbol  Default SI unit
Young’s modulus E Pa
Poisson’s ratio v

Shear modulus G Pa
Linear compressibility Pa~!
Bulk modulus K Pa
Compliance s Pa~!
Stiffness c Pa
Stress o Pa
Strain £

Normal stress on Pa
Shear stress T Pa
Normal strain &n

Shear strain y

Unit vectors parallel to  a, b, ¢ Miller
crystallographic axes notation

tinct minerals with 246 separate elasticity datasets from pub-
lished sources, and we summarise the degree of anisotropy
to be found in rock-forming minerals. Secondly, we analyse
specific examples and focus on their response to applied de-
formation. We review the key issues raised by these analyses
in the Summary section. The appendix contains benchmarks
of the calculations performed in AnisoVis in comparison to
published output from previous workers.

2 Theory and underlying equations

The elastic anisotropy of a solid material is described by a
fourth-rank tensor, either the compliance s;ji; or its inverse
the stiffness c;jx; (Nye, 1985). For linear elastic deformation,
the generalised form of Hooke’s law can be written as

&ij = SijkiOkis (D

where ¢;; and o;; are the second-rank tensors of strain and
stress, respectively. Alternatively, Eq. (1) can be written as

Ojj = Cijki€ki- 2

Symmetry considerations lead to s;jx = s;jix and sk =
sjiri (Nye, 1985). The corollary of these relationships is that
the number of independent (potentially unique) components
of s;jxs is reduced from 81 (= 3%) to 36. The same applies
to cjjx- The elastic compliance s or stiffness ¢ of a crys-
tal can therefore be represented in a more compact form,
known as the Voigt matrix. This is a square 6 x 6 matrix
where, for example, the elements of elastic stiffness are de-
fined as ¢jj = cjjxs, where I =ij and J = kl. There are six
different permutations of I (J) = ij (kl), the details of which
are listed in Nye (1985) and more recently in Almqvist and
Mainprice (2017).
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Figure 1. (a) Crystallographic orientation convention (after Britton
et al., 2016) and (b) geometrical reference frame (after Turley and
Sines, 1971) used in this paper.

The measured and calculated elastic properties of single
crystals are reported in Voigt matrix notation (sys, cry),
where the indices I and J (=1, 2, 3) relate to a standard
Cartesian reference frame (x =1, y =2, z =3). The rela-
tionship between any specific crystal lattice and this Carte-
sian reference is arbitrary, but we adopt the convention de-
scribed in Britton et al. (2016). In this system

the unit cell lattice vectors a, b and ¢ form a right-
handed set,

c is parallel to Cartesian z,

b lies in the Cartesian y—z plane at angle « to ¢, and

a is directed at angle B to ¢ and y to b.

Note that « is the angle between b and ¢, B is the angle
between ¢ and a, and y is the angle between a and b (see
Fig. 1a).

Familiar elastic properties, such as Young’s modulus (E),
Poisson’s ratio (v) and shear modulus (G), can be expressed
directly in terms of the components of the compliance matrix.
For example, the Young’s modulus of a single crystal for a
uniaxial stress applied in the x direction is

E.=E| =1/s11, 3)

and the Poisson’s ratio for a uniaxial stress and axial strain
along x and a lateral strain along y is

Vyy = —821/511- “4)

Note that, in general for anisotropic materials, vy, 7# vy, and
SO on.

Guo and Wheeler (2006) note that although Poisson’s ra-
tio may be negative for some directions, these are often com-
pensated by higher positive values in transverse directions
perpendicular to the minima in the same plane. They sug-
gest a more useful measure of extreme auxeticity, the areal
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Poisson’s ratio, defined as the average of all values of Pois-
son’s ratio taken within the plane normal to a chosen direc-
tion. If the areal Poisson’s ratio is negative, this implies that a
cylinder of the mineral would contract under a uniaxial com-
pression, around the whole circumference, and not just along
certain directions.

In order to calculate specific values of these elastic prop-
erties in more general directions within a crystal — i.e. not
just along the axes of the default Cartesian reference frame
— we need to transform the compliance matrix into a differ-
ent reference frame. We follow the notation used by Turley
and Sines (1971) based on Eulerian angles «, f and 6 (see
Fig. 1b) that define the new Cartesian axes (1, 2/, 3’ or x’,
y’, Z’) in relation to the initial reference frame (1, 2, 3 or x,
¥, z). The transformation of compliance matrix s;;; to slf ki
is given by (Nye, 1985):

’
Sijki = Qim@ jnAkoQipSmnop, (5)

where the elements of the rotation matrix a are given by

A B C
aij=| (Dsinf+ Ecosf) (Fsinf+Gceosf) Hsind |, (6)
(Dcosf — Esinf) (Fcosf —Gsinf) Hcosf

where A =cosacosf, B =sinacosf, C =sinf, D=
—cosasinf8, E = —sina, F = —sinasin8, G = cosa, and
H = cos B (Turley and Sines, 1971).

Using the transformed compliance matrix s; jki» We can
now calculate the elastic properties for any general direction
within the crystal defined by a unit vector with angles «, 8
and 0; for example,

Ei = l/sil, 7)
G’y = /566 ®
Vi = —851/51]- &)

To calculate the variation in any elastic property over all pos-
sible directions in 3D, we simply need to vary « and 8 over
a unit sphere («: 0-360°, B: 0—180°) and vary 6 over a unit
circle (8: 0-360°).

Isotropic approximations of anisotropic elastic
properties

Two useful “averaging” schemes that can be applied to the
full set of anisotropic elastic properties of polycrystals are
those due to Reuss and Voigt (see Hill, 1952). The bulk and
shear moduli in the Voigt scheme are defined as

KY = [(c11 + a2 +¢33) +2(c1a+ 3 +¢31)1/9, (10
GY = [(c11 +cn+c33) — (cra+c3+c31)
+3 (ca4 + 55 +ce6)1 /15, (1D

and in the Reuss scheme as

KR = 1/[(s11 + 522 +533) +2 (512 + 523 + 5311, (12)
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GR = 15/[4(s11 + 522 +533) — 4 (512 + 523 +531)
+3 (544 + 555 + S66)] . (13)

The Voigt average of any property always exceeds the Reuss
average and the “true” value lies somewhere in between. The
Voigt—Reuss—Hill (VRH) average of a property is defined as
the arithmetic mean of the Voigt and Reuss estimates, e.g.
GVRH = (GY 4 GR)/2. Note that, although only formally
defined for polycrystals and based on averaging over many
grains, the Voigt, Reuss and VRH estimates are in practice
useful for single crystals: if we consider a polycrystal made
of many grains all aligned perfectly parallel, then the elastic
anisotropy of this polycrystal is identical to that of the single
crystal.

To plot the variations of disparate elastic properties across
minerals with widely different symmetries and anisotropies,
we use the Universal Anisotropy Index (AY), of Ranganathan
and Ostoja-Starzewski (2008), defined as

GV kv

U_
A~ = +ﬁ_6’ (14)

2GR
where GV and KV are the Voigt average shear and bulk
moduli, respectively; and GR and KR are the Reuss average
shear and bulk moduli, respectively. In contrast to previous
measures, the Universal Anisotropy Index was designed to
incorporate contributions from the bulk part of the elastic-
ity (terms in K) and is unique for a given mineral elasticity
(Ranganathan and Ostoja-Starzewski, 2008). AV is zero for
isotropic materials and increases as symmetry decreases, €.g.
monoclinic and triclinic minerals tend to have higher AY.

3 AnisoVis — program description and visualisation
methods

The visualisations of elastic anisotropy presented in
this paper have been prepared using AnisoVis, a set
of custom scripts linked to a graphical user inter-
face (GUI) and written in MATLAB™., This code is
available as an open-source project on GitHub and
through the MathWorks™ File Exchange server (https:
//github.com/DaveHealy- Aberdeen/AnisoVis, last access:
28 February 2020; https://uk.mathworks.com/matlabcentral/
fileexchange/73177-anisovis, last access: 28 February 2020).
Single mineral elasticity values are supplied as input data, to-
gether with lattice parameters defining the unit cell and sym-
metry. The code then calculates the directional variations in
elastic properties and produces outputs of the kinds shown in
Figs. 4-7. AnisoVis can also calculate the acoustic velocities
(phase and group) and their polarisations, as well as the op-
tical birefringence from the refractive indices. Over 240 data
files for 86 different minerals are included (from published
sources), and a user guide is provided with the software.
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3.1 Installation and input file format

AnisoVis is installed by copying all of the files from the
GitHub or MathWorks File Exchange server into a folder on
the user’s computer. AnisoVis will run on any computer with
MATLAB installed, including running Windows, Mac OS X
or different versions of Linux. After starting MATLAB, the
working folder or directory should be set to the folder con-
taining the installed source code. The application is started
by typing “AnisoVis” in the command window of the MAT-
LAB session. There is only one window in AnisoVis (Fig. 2).
Click “Browse...” to show the standard dialogue to open an
input file of mineral properties. These data are stored in for-
matted tab-delimited ASCII text files with an extension of
“.mdf2” (“mineral data file”’). The user guide supplied with
the software has examples for each different mineral symme-
try class.

3.2 Calculations

After selecting the required output formats (shape, sphere
or stereogram) and anisotropic properties to be visualised
(elastic, acoustic or optical), the user clicks “Plot” to gener-
ate the images. Calculations are performed using the equa-
tions for each property described above, looping through
three-dimensional space with the specified angular incre-
ment. Smaller angular increments (e.g. 1-2°) take longer to
run than larger increments (e.g. 5—-10°). In the tests that we
have conducted to date, runtime has been very satisfactory,
with most operations completed in a few seconds on standard
desktop computers purchased within the last three years. The
exception to this performance is when the angular increment
is 1°, where runtimes are typically of the order of 1-2 min.
We have implemented a MATLAB™ “waitbar” to provide
basic progress information for lengthier tasks.

3.3 Generating outputs

Output is directed to MATLAB figure windows, with one
plotted property per figure window. These images are au-
tomatically saved as “.tif”” files at 600 dpi resolution in the
working folder. While each figure window is visible, the user
can exploit standard MATLAB functionality to resize or re-
format the figure as they wish, and they can save the figure
to a different filename, folder or even to a different graphic
format (e.g. “.png” or “.jpeg”). The colour schemes used for
the representation surfaces, unit spheres and stereograms can
be varied using the drop-down list box in the main window.
In addition to the standard MATLAB colour map of “Parula”,
we offer three other choices from the cmocean colour map li-
brary (Thyng et al., 2016) using perceptually uniform scales
(“Haline”, “Thermal” and “Matter”).
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3.4 Visualising elastic anisotropy in 2D and 3D

As pointed out by Nye (1985), no single surface can rep-
resent the elastic behaviour of a crystal completely. How-
ever, we can plot specific surfaces that are useful in prac-
tice. To visualise the anisotropy of elastic properties of sin-
gle crystals, we use a mixture of 3D surfaces and 2D polar
plots projected onto selected planes. We use representation
surfaces (Nye, 1985) to generate 3D shapes where, for any
given radius vector measured from the origin to the surface,
the radius is proportional to the magnitude of the property
in that direction. The magnitude of the property is also con-
veyed by a colour mapping applied to the surface. An alter-
native method is to plot the directional variation of a prop-
erty projected onto a unit sphere, using a colour map to de-
pict the magnitude. We can also use stereographic projections
(lower-hemisphere equal-area) to show directional variations
in properties. Lastly, we can use polar plots to the variation
of a property in selected crystallographic planes (e.g. [100],
[010], [001]).

3.5 Challenges in visualising Poisson’s ratio (v) and
shear modulus G

Any of the above methods of visualisation can be used for
“simple” elastic properties, such as Young’s modulus or lin-
ear compressibility, where the property is a single scalar
value for a given direction. Young’s modulus is defined as
the ratio of uniaxial stress to uniaxial strain, and it is implicit
that the directions of applied stress and measured strain are
coincident (i.e. coaxial; Fig. 3). However, for Poisson’s ra-
tio and shear modulus this is no longer the case. Poisson’s
ratio is defined as the ratio of (negative) lateral strain to the
axial strain, and therefore involves two orthogonal directions
(Fig. 3). Shear modulus is defined as the ratio of the shear
stress to the shear strain, again involving two orthogonal di-
rections (see Fig. 3). For a stress (normal or shear) applied
in a specific direction, there is only one value of E, but there
are many possible values of v and G. It can be seen from
Fig. 3 that v and G will vary according to the direction of
the normal to the chosen direction [kk[], described by angle
6 in the Turley and Sines (1971) notation. To plot representa-
tion surfaces for v and G, we take their minimum and max-
imum values calculated over 6 for an applied stress along
each direction in 3D space. In addition, as v can be nega-
tive for some directions in some minerals, we further sepa-
rate the minimum representation surfaces of Poisson’s ratio
into negative minimum and positive minimum components
where appropriate.

3.6 Example: x-quartz (trigonal; Ogi et al., 2006)
To illustrate the different possibilities described above, we

use the elasticity of «-quartz as quantified by Ogi et
al. (2006). The anisotropy of Young’s modulus is shown in
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D. Healy et al.: Elastic anisotropy in rock-forming minerals

265

AnisoVis

AnisoVis - Visualising Anisotropy

Input

Filename Cesium dihydrogen phosphate.mdf2

Cesium dihydrogen phosphate
Landolt-Bornstein tables
Monoclinic

Browse...

Output formats
3D shape (representation surface), colour-coded

OBJ file for 3D printing (coming soon...)
3D unit sphere, colour-coded

2D stereographic projection, colour-coded
Equal area Equal angle
Lower hemisphere

Upper hemisphere

2D line graphs for selected planes

Angular increment, ° 5 [T

Colour scheme Parula

[smaller increment = smoother plot, but slower]

Mineral data file selected; now choose your Output options...

Outputs
Elastic Optical

Young's modulus Birefringence

Shear modulus
Poisson's ratio Plot

Linear compressibility Exit

Acoustic

P-wave, phase velocity Vp P-wave polarisation

S1-wave, phase velocity Vs1 S1-wave polarisation
S2-wave, phase velocity Vs2 S2-wave polarisation

deltaVs, (Vs1-Vs2) [bigger ir}crelment better
for polarisation vectors]
P-wave, group velocity

S1-wave, group velocity

S2-wave, group velocity

[NB: takes time...]
Summary plots

Figure 2. The graphical user interface in AnisoVis, showing the range of output options for elastic, acoustic and optical anisotropies.

Fig. 4 using a representation surface, a unit sphere, a stere-
ogram and polar plots of E in the plane (100). The colour bar
scale is the same in all plots for ease of comparison. Using
AnisoVis, the user can rotate any of these plot views in the
MATLAB figures to gain a better appreciation of the direc-
tional variations in relation to the crystallographic reference
axes (a), (b) and {(c).

As noted above, the shear modulus is a function of shear
stress in one direction and a shear strain in a perpendicular
direction. Therefore, for any given crystallographic direction
in 3D space [Akl] in an anisotropic crystal, there are many
possible values of G as the transverse component is rotated
through the angle 6 (see Fig. 1b). In Fig. 5 we show represen-
tation surfaces for the minimum and maximum values of G
of «-quartz associated with each direction [kkl]. Polar plots
are also shown for planes (010) and (001).

Visualising the directional variation of Poisson’s ratio v
can pose further challenges. «-Quartz is auxetic and has
many directions that show negative Poisson’s ratios. As for
shear modulus, we show representation surfaces for both the
minimum (Fig. 6a—b) and maximum (Fig. 6¢) Poisson’s ra-
tios, but we separate the minimum Poisson’s ratio plot into
two surfaces: one for vy, < 0 (Fig. 6a) and one for vy, > 0
(Fig. 6b). Maximum Poisson’s ratio is nearly always positive,
and we show a single plot for this. We also include a plot for
the areal Poisson’s ratio — the value of Poisson’s ratio aver-
aged over all @ for each direction [kkl] (Fig. 6d; after Guo
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and Wheeler, 2006). Polar plots for specific 2D planes can
also be useful (Fig. 6e—f).

The linear compressibility (8) of an anisotropic crystal
quantifies the directional response to an applied hydrostatic
load, i.e. to pressure, not stress. For isotropic materials, the
compressibility is a scalar — i.e. directionally invariant — and
it is simply the inverse of the bulk modulus K (8 =1/K).
For anisotropic rock-forming minerals, this is no longer the
case, and B varies with direction. Figure 7 shows the varia-
tion for a-quartz using the same types of plots as for Young’s
modulus (Fig. 5).

In summary, we note that as a corollary of the point made
by Nye (1985) that no single surface can represent the full
richness of the fourth-rank elasticity tensor, neither can any
one measure (e.g. E, G, v or ) convey the complete be-
haviour of an anisotropic mineral. The anisotropies of the
different parameters shown in these plots should be used in
combination to understand a specific problem.

3.7 Visualising second-rank tensors: stress and strain

To address the challenges in visualising stress and strain de-
scribed above, we use two separate graphical depictions, or
glyphs, for the normal and shear components of the strain
and stress tensors (Kratz et al., 2014). We use the Reynolds
glyph for normal strains and stresses, as this can show posi-
tive and negative principal values (Moore et al., 1996). We
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Figure 3. Schematic diagrams to illustrate the definitions of Young’s modulus, Poisson’s ratio and shear modulus in a 3D crystallographic

reference frame, using «-quartz (trigonal) as an example.

use the HWY glyph to visualise the shear components of
the strain and stress tensors (Hashash et al., 2003). Figures 8
and 9 show examples of the Reynolds and HWY glyphs for
strains and stresses, respectively. Isotropic compaction plots
as a single point in Mohr space (Fig. 8a), and as a sphere
using a Reynolds glyph (Fig. 8b; shear strains are zero and
so there is no HWY glyph), are shown. For a general triax-
ial strain with both shortening and stretching components,
the Reynolds and HWY glyphs are shown in Fig. 8d and e.
Note that in the HWY glyph for shear strain the maxima are
located at 45° to the principal axes, and the minima (0) are
located along the principal axes. Triaxial compressive stress
is shown in Fig. 9a—c. Again, maxima of shear stress in the
HWY glyph are at 45° to the directions of the principal (nor-
mal) stresses. For a general triaxial stress with components of

Solid Earth, 11, 259-286, 2020

compression and tension, the directional variations of normal
and shear stress are shown in Fig. 9d—f.

4 Results — general trends
4.1 Data sources

The elastic properties of the minerals used in this study
have been derived from previous compilations and original
sources where possible. Many compilations of elastic and
other physical properties are now available: see Bass (1995)
and Almgqvist and Mainprice (2017) and references therein.
Note that most elastic properties are measured by laboratory
methods, whereas a minority are calculated from theory (ab
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(C) Stereogram (d)
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180 0

70 80 90 100 110 120 e

Figure 4. Alternative visualisations of the anisotropy of Young’s
modulus (£, in GPa) of «a-quartz. (a) 3D representation surface
where the radius in any direction is proportional to the magnitude
of E. (b) Projection of E on to a unit sphere, colour-coded by
magnitude. (¢) Lower-hemisphere equal-area stereographic projec-
tion. (d) Polar plot of anisotropy of E in selected planes. Crystallo-
graphic axes {a), (b) and (c) shown in pink.

initio molecular dynamics simulations; e.g. Mainprice et al.,
2008). Single mineral lattice parameters have been extracted
from the same publication as the elasticity data where possi-
ble; however, if these were not available, we took represen-
tative values from Deer et al. (1992).

4.2 Summary plots

From our database of published elastic properties of rock-
forming minerals (246 data files covering 86 distinct min-
erals, all included with AnisoVis), we have calculated the
maxima and minima for Young’s modulus, Poisson’s ratio,
shear modulus and linear compressibility. In Fig. 10 we show
the variation in the anisotropy of Young’s modulus (E) for
246 rock-forming minerals as a function of the Universal
Anisotropy Index AY. If we consider a simple measure of the
anisotropy of E as the ratio between the maximum and mini-
mum values, it is clear that most minerals display significant
anisotropy with Epax/Emin often greater than 2. With in-
creasing AY, many minerals show E,x/ Emin ratios of about
4 or more. Figure 11 shows the anisotropy of shear modulus
(G) for the same rock-forming minerals plotted against AY.
The anisotropy of G, simply defined as Gmax/Gmin, 15 less
than that shown for E, and this ratio tends to flatten out with
increasing AY.
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Figure 5. Alternative visualisations of the anisotropy of shear mod-
ulus (G, in GPa) of a-quartz. (a-b) 3D representation surfaces
where the radius in any direction is proportional to the magni-
tude of G. Separate surfaces shown for minimum and maximum G.
(c) Lower-hemisphere equal-area stereographic projection of G pax.
(d) Polar plots of anisotropy of G in selected planes. Crystallo-
graphic axes (a), (b) and (c) shown in pink. VRH represents the
Voigt—Reuss—Hill average value of G.
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Figure 12 shows the variation in Poisson’s ratio (v) ver-
sus AY for all minerals. The shaded area in Fig. 12a and
b denotes the range 0 <v <0.5. As noted by Ting and
Chen (2005), v for anisotropic materials can have no bounds.
The data show that many minerals have minimum values less
than 0 and maximum values greater than 0.5. The histogram
in Fig. 12¢ shows the statistical variation in vy, for all min-
erals: 28 % (= 70/246) have negative minimum values for
Poisson’s ratio — that is, they display auxetic behaviour. Anal-
ysis of the variation of vy« shows that 37 % (= 91/246) have
values greater than 0.5 (Fig. 12d). The mean value of the
Voigt—Reuss—Hill average of Poisson’s ratio for all minerals
is 0.2464 (Fig. 12e), close to the default assumption of many
simplifications to elastic isotropy (v = 0.25). A full list of
the rock-forming minerals in our database that show auxetic
behaviour is shown in Table 2, and the specific directions of
negative v are shown for several examples in the stereograms
in Fig. 13.

The elastic properties of minerals are known to be temper-
ature (7)) and pressure (P) dependent. However, systematic
data to quantify the variation of anisotropic elasticity with T
or P are relatively scarce. We summarise some of the pub-
lished data in Fig. 14, shown as the calculated range in Pois-
son’s ratio (Vmin t0 Vmax). In terms of pressure dependence,
the effect of increasing P is to decrease the anisotropy in v
for talc to within the range normally expected for isotropic
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Table 2. List of rock-forming minerals showing auxetic behaviour (Poisson’s ratio < 0) in at least one direction. Also shown are those
minerals with directions that have negative areal Poisson’s ratio (Guo and Wheeler, 2006). The “Reference” column shows the source of the
elasticity data for each mineral used in the calculation. The auxetic directions were found by calculating Poisson’s ratio for every possible
direction («, B, 6 in the Turley and Sines reference frame shown in Fig. 1) using an angular increment of 1° in each direction.

Mineral Symmetry Minimum v <0  Minimum areal v <0  Reference
Albite (An0) Triclinic —0.03 Hearmon (1984)
Triclinic —0.15 Brown et al. (2016)
Anhydrite Orthorhombic —0.046 Hearmon (1979)
Andesine (An37) Triclinic —0.091 Brown et al. (2016)
Andesine (An48) Triclinic —0.075 Brown et al. (2016)
Antigorite Monoclinic —0.215 Bezacier et al. (2010)
Aragonite Orthorhombic —0.061 Hearmon (1979)
Augite Monoclinic —0.012 Aleksandrov et al. (1964)
Bytownite (An78) Triclinic —0.053 Brown et al. (2016)
Calcite Trigonal —0.047 Babuska and Cara (1991)
Hexagonal —0.02 Chen et al. (2001)
Coesite Monoclinic —0.108 Weidner and Carleton (1977)
«-Cristobalite Tetragonal —0.537 —0.262  Pabst and Gregorova (2013)
B-Cristobalite Cubic —0.288 —0.162  Pabst and Gregorova (2013)
Dolomite Trigonal —0.064 Hearmon (1979)
Hornblende Monoclinic —0.075 Hearmon (1984)
Illite-Smectite Monoclinic —-0.416 Militzer et al. (2011)
Labradorite Triclinic —0.085 Ryzhova (1964)
Labradorite (An60)  Triclinic —0.009 Brown et al. (2016)
Labradorite (An67)  Triclinic —0.025 Brown et al. (2016)
Lawsonite Orthorhombic —0.088 Sinogeikin et al. (2000)
Microcline Triclinic —0.199 —0.042 Babuska and Cara (1991)
Oligoclase (An25) Triclinic —0.098 Brown et al. (2016)
Orthoclase Monoclinic —0.169 Hearmon (1984)
Monoclinic —0.092 Waeselmann et al. (2016)
«o-Quartz Trigonal —-0.97 —0.071  Ogi et al. (2006)
Trigonal —0.93 —0.067 Babuska and Cara (1991)

T =200°C Trigonal —0.123 —0.088  Lakshtanov et al. (2007)

T =400°C Trigonal —0.215 —0.138  Lakshtanov et al. (2007)

T =500°C Trigonal —0.301 —0.186  Lakshtanov et al. (2007)

T =573°C Trigonal —0.546 —0.398 Lakshtanov et al. (2007)

T =575°C Hexagonal —0.255 —0.095 Lakshtanov et al. (2007)
Rutile Tetragonal —0.044 Manghnani (1969)
Sanidine Monoclinic —0.097 Waeselmann et al. (2016)
Sillimanite Orthorhombic —0.001 Verma (1960)

Sphalerite Cubic —0.025 Hearmon (1984)
Spinel Cubic —-0.07 Hearmon (1984)

T =300K Cubic —0.081 Anderson and Isaak (1995)

T =350K Cubic —0.079 Anderson and Isaak (1995)

T =400K Cubic —0.083 Anderson and Isaak (1995)

T =450K Cubic —0.083 Anderson and Isaak (1995)

T =500K Cubic —0.084 Anderson and Isaak (1995)

T =550K Cubic —0.084 Anderson and Isaak (1995)

T =600K Cubic —0.085 Anderson and Isaak (1995)

T =650K Cubic —0.033 Anderson and Isaak (1995)

T =700K Cubic —0.088 Anderson and Isaak (1995)

T =750K Cubic —0.089 Anderson and Isaak (1995)

T =800K Cubic —0.09 Anderson and Isaak (1995)

T =850K Cubic —0.092 Anderson and Isaak (1995)

T =900K Cubic —0.093 Anderson and Isaak (1995)

T =950K Cubic —0.094 Anderson and Isaak (1995)

T =1000K Cubic —0.095 Anderson and Isaak (1995)
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Table 2. Continued.
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Mineral Symmetry Minimum v <0 Minimum areal v <0  Reference
Staurolite Orthorhombic —0.201 Hearmon (1979)
Stishovite Tetragonal —0.04 Babuska and Cara (1991)
Talc (cl) Triclinic —0.864 —0.287  Mainprice et al. (2008)
P =0.87GPa Triclinic —0.178 —0.001 Mainprice et al. (2008)
P =1.96GPa Triclinic —0.107 Mainprice et al. (2008)
P =3.89 GPa Triclinic —0.009 Mainprice et al. (2008)
Talc (c2c¢) Monoclinic —0.126 —0.029  Mainprice et al. (2008)
P =0.15GPa Monoclinic —0.107 —0.021  Mainprice et al. (2008)
P =0.35GPa Monoclinic —0.125 —0.025 Mainprice et al. (2008)
P =0.64 GPa Monoclinic —0.091 —0.002  Mainprice et al. (2008)
P =0.93GPa Monoclinic —0.028 Mainprice et al. (2008)
P =1.72GPa Monoclinic —0.019 Mainprice et al. (2008)
Zircon (metamict) Tetragonal —0.113 Hearmon (1984)
Zoisite Orthorhombic —-0.014 Mao et al. (2007)
Number of distinct minerals n=33 n="7

minerals. The opposite effect is observed for zircon, with
modest increases in vpyax with P. The temperature depen-
dence of elastic anisotropy in quartz is well known (Main-
price and Casey, 1990), with a significant excursion into aux-
etic behaviour at the temperature of the «—f phase transi-
tion at 573°C (846 K). The effect of increasing T on the
anisotropy of v for olivine, corundum and spinel is almost
non-existent.

Linear compressibility (8) also displays significant
anisotropy in rock-forming minerals (Fig. 16). A list of the
rock-forming minerals in our database that show negative lin-
ear compressibility (NLC) is shown in Table 3. These miner-
als have directions that expand in response to a compressive
hydrostatic pressure (and vice versa: “stretch-densification”
of Baughman et al., 1998b). The specific directions of nega-
tive B are shown in the stereograms in Fig. 15.

We can summarise the elastic anisotropy data for all rock-
forming minerals using the elastic anisotropy diagram of
Ranganathan and Ostoja-Starzewski (2008). In their review
of Poisson’s ratio in materials, Greaves et al. (2011) used a
plot of bulk modulus K versus shear modulus G; however,
for the anisotropic rock-forming minerals there is no single
value of either of these properties. Following Ranganathan
and Ostoja-Starzewski (2008), we therefore take the ratios
KV /KR and GV /GR and cross-plot these instead (Fig. 17).
Note that the origin is at (1, 1) as no mineral can have
KV /KR <1 or GV/GR < 1. The dashed lines of slope —5
are for constant AV (Eq. 14), increasing to the right. Unsur-
prisingly, minerals with monoclinic, triclinic and hexagonal
symmetries dominate the higher elastic anisotropies, while
minerals with cubic, orthorhombic and tetragonal symme-
tries are generally less elastically anisotropic.
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5 Results — specific examples
5.1 Twinning

Deformation or mechanical twinning critically depends on
the anisotropy of elastic properties, because minerals respond
elastically to imposed stress (or strain) before exceeding the
threshold for twin nucleation and propagation (Christian and
Mahajan, 1995, and references therein). Perhaps the most
widely accepted theory is that twin initiation occurs when
an applied shear stress along the twin shear plane (K1) in the
shear direction of twinning (1) reaches a critical value (crit-
ically resolved shear stress, CRSS) for twin nucleation and
propagation, analogous to Schmid’s law for dislocation slip
(Thompson and Millard, 1952; Bell and Cahn, 1953; Chris-
tian and Mahajan, 1995). However, experimental results can
indicate that twinning dynamics can be more complex (e.g.
Bell and Cahn, 1957). Additional complexities, such as en-
ergy barriers for the nucleation of coeval defects such as
stacking faults, disconnections and unstable transition states
associated with twinning, have also been considered for twin-
ning in metals (e.g. Serra and Bacon; 1996; Kibey et al.,
2007; Pond et al., 2016). Development of a general theory
of mechanical twinning applicable to most minerals is still
lacking. Nevertheless, shear modulus G in 1 along K is
highly relevant to mechanical twinning.

Dauphiné twins in «-quartz are merohedral twins, mean-
ing only some atoms exchange their positions, resulting in a
host—twin symmetry relationship that can be described sim-
ply by a 180° rotation about the ¢ axis, and recognisable in
EBSD maps via a 60° misorientation around the ¢ axis. The
formation of Dauphiné twins has been related to the differ-
ence in elastic strain energy between twinned and un-twinned
at constant stress (Thomas and Wooster, 1951; Tullis, 1970;
DeVore, 1970). This difference in elastic strain energy can be
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Table 3. List of rock-forming minerals showing negative linear compressibility (NLC) in at least one direction.

Mineral Symmetry ~ Minimum 8 < 0, GPa~!  Reference
Lizardite = Hexagonal —0.00165 Reynard et al. (2007)
Talc (c1)  Triclinic —0.00251  Mainprice et al. (2008)
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Figure 6. Alternative visualisations of the anisotropy of Poisson’s
ratio (v) of «-quartz. (a—d) 3D representation surfaces where the ra-
dius in any direction is proportional to the magnitude of v. Separate
surfaces shown for minimum negative, minimum positive, maxi-
mum and areal v, as defined in the equations in Sect. 2. (e) Lower-
hemisphere equal-area stereographic projection of v,peq. (f) Polar
plots of anisotropy of v in selected planes. Crystallographic axes
(a), (b) and (c) shown in pink.

written as

AE =1/2(01 — 03)*As}y, 15)
where (01 — 03) is the applied differential stress, and As{1 =
/ / /g :
ST 1 twinned — S11un-twinned" Note that S1p 18 the re01.pr0cal'0f 'the
Young’s modulus for a given direction. Dauphiné twinning
occurs more readily in those directions for which the strain
energy difference (AE) is larger, under a boundary condi-
tion of constant axial stress. (The inverse is also true: un-

Solid Earth, 11, 259-286, 2020

(a)

z

(c Stereogram

b)
180
&
GPa
75 8 85 9 9.5

Representation surface

(b)

GPa'x10°

Unit sphere
GPa"x10?

Polar plot, [010]
20

0.02
01
0

270

[ o

%103

Figure 7. Alternative visualisations of the anisotropy of linear com-
pressibility (8, in GPa—!) of «-quartz. (a) 3D representation surface
where the radius in any direction is proportional to the magnitude
of B. (b) Projection of B on to a unit sphere, colour-coded by mag-
nitude. (¢) Lower-hemisphere equal-area stereographic projection.
(d) Polar plot of anisotropy of g in the (010) plane. Crystallographic
axes (a), (b) and (c) shown in pink. VRH represents the Voigt—
Reuss—Hill average value of 8.

der a condition of constant strain, the preferred directions
of twinning are those that minimise A E; Paterson, 1973.)
The variation of As{, with direction in a-quartz is shown
in Fig. 18. The stereogram is the same pattern shown in
Thomas and Wooster (1951; their Fig. 3a) and Tullis (1970;
her Fig. 2b). Also shown is a 3D representation surface of
Asi,, which emphasises the anisotropy of favoured direc-
tions for Dauphiné twins in «-quartz. The significance of
Dauphiné twinning in quartz has recently been described for
sandstones compacted during diagenesis (Mgrk and Moen,
2007), deformed in fault damage zones (Olierook et al.,
2014), deformed by meteorite impact (Wenk et al., 2011;
Timms et al., 2019; Cox et al., 2019), and deformed by gran-
itoid protomylonites (Menegon et al., 2011). In all cases,
Dauphiné twins can be used to infer palaeostresses from de-
formed microstructures. In addition, Menegon et al. (2011)
make the point that Dauphiné twins, formed early in a defor-
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Figure 8. Examples of strain tensors depicted in Mohr space (&y, ) and as Reynolds (normal strains, ) and HWY (shear strains, y) glyphs.
(a=b) Isotropic compaction (taken as negative, red colour). (c—e) Visualisations for a general triaxial strain. Note the lobes of extensional

(blue) and contractional (red) strain in the normal strain plot (d).
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Figure 9. Examples of stress tensors depicted in Mohr space (oy, 7) and as Reynolds (normal stress, o) and HWY (shear stress, 7) glyphs.
(a—c) Triaxial compression (taken as negative, red colour). (d—f) General triaxial stress with one principal stress tensile (oxx).
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Figure 10. Anisotropy of Young’s modulus in rock-forming miner-
als (n = 246) plotted against the Universal Anisotropy Index AY)
of Ranganathan and Ostoja-Starzewski (2008). EyRry is the Voigt—
Reuss—Hill average of E. Many minerals display anisotropy of E
(Emax/ Emin) of 2 or more. (b) Plot of Emax/Emin versus AY. (c-
e) Histograms of E,jn, Emax and EyRry to show the distribution
across all 246 datasets.

mation history, may effectively store strain energy which is
then consumed in later plastic deformation mechanisms. De-
Vore (1970) plotted the directional variation of compliances
for quartz, ortho- and clino-pyroxene, hornblende, and pla-
gioclase and thereby extended the initial concept of Thomas
and Wooster (1951). To our knowledge, detailed analyses of
mechanical twins in these phases has not yet been related to
the anisotropy of elastic compliance or the calculated varia-
tions in elastic strain energy for specific applied loads.

The relationship between elastic anisotropy and deforma-
tion twinning has been investigated in zircon (Timms et al.,
2018). In zircon, deformation twins can form as a response
to shock conditions and are diagnostic of hyper-velocity im-
pact events (Timms et al., 2012, 2017; Erickson et al., 2013).
Shock twinning in zircon, which is tetragonal, can occur
in up to four symmetrically equivalent orientations, form-
ing along {112} composition planes (the planes of invariant
shear, or K1) and with shear direction n; = (111), resulting
in a host-twin 65°/{110} misorientation relationship (Timms
et al., 2018). Twinning in this mode has been shown to corre-
spond to the lowest values of G (Gmin = G111y =~ 98 GPa)
(Timms et al., 2018). Furthermore, the lowest values of v are
along (111) in zircon, indicating that zircon is almost per-
fectly compressible in (111) (min = v(111) > 0 and < 0.1)
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Figure 11. Anisotropy of shear modulus in rock-forming minerals
(n = 246) plotted against the Universal Anisotropy Index of Ran-
ganathan and Ostoja-Starzewski (2008). Gyry is the Voigt—Reuss—
Hill average of G. (b) Plot of Gmax/Gmin versus AU, (c—e) His-
tograms of Gpin, Gmax and Gyry to show the distribution across
all 246 datasets.

(Timms et al., 2018). These authors illustrate that elastic soft-
ness in shear (low G) and a lack of lateral strain in the shear
plane (v ~ 0) are favourable conditions for twinning in zir-
con (Timms et al., 2018). However, further work is required
to determine the critically resolved shear stress for twinning
in zircon. Nevertheless, the ability to calculate and visualise
anisotropic elastic properties in specific crystallographic di-
rections presented here will be very useful for detailed inves-
tigations of mechanical twinning in other phases.

5.2 Polymorphic phase transformations

Coherent phase transformations (or transitions) may also be
related to the anisotropy of elastic properties, including the
a—f transformation in quartz. Coe and Paterson (1969) de-
scribe experiments on oriented cores from single crystals of
quartz heated to temperatures above the transformation tem-
perature (573 °C, at atmospheric pressure) and subjected to
non-hydrostatic stress. They found that the temperature of
transition was raised by different amounts depending on the
orientation of the stress with respect to the crystal. Crys-
tal cores stressed parallel to the ¢ axis showed the least
change, whereas those loaded in the m direction (perpendic-
ular to ¢) showed the greatest increase. (They also performed
experiments on samples cored in the o and r’ directions.)

www.solid-earth.net/11/259/2020/
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Figure 12. (a) Anisotropy of Poisson’s ratio in rock-forming
minerals (n = 246) plotted against the Universal Anisotropy In-
dex of Ranganathan and Ostoja-Starzewski (2008). vyry is the
Voigt—Reuss—Hill average of v. (b) Plot of vmax/vmin versus AU,
(c) Histogram of vpi, values shown in Fig. 12. Note that 28 %
(n =70/246) of minerals display negative vp,j,. (d) Histogram of
Vmax values. Note 37 % (n = 91/246) minerals display vmax > 0.5.
(e) Histogram of vyrpy values. Mean vyryy = 0.2464, very close to
the common default assumption of v = 0.25.

The temperature of phase transformation from «- (trigonal)
to B-quartz (hexagonal) is therefore stress dependent. The
theoretical analysis of Coe and Paterson (1969, their Ap-
pendix C) ascribes this dependence to an infinitesimal re-
versible transformation strain, based on the formalism of Es-
helby (1957, 1959). Noting that the transformation is also
marked by a “dramatic increase in the development of small-
scale Dauphine twins”, we have calculated the elastic strain
energy per unit volume for each of the four core orientations
tested by Coe and Paterson, using their values of applied
stress (01 = —1 GPa, 02 = 03 = —300 MPa; negative stress
compressive) and the elastic constants of a-quartz at 500 °C
(Lakshtanov et al., 2007). The results are shown in Fig. 19,
and they clearly show an exact correlation with experimen-
tal data: the sample loaded in the m direction has the highest
strain energy and that in the ¢ direction has the lowest. The
overall sequence is W(m) > W(r') > W(0) > W(c), which
precisely mirrors that of the variation in 07 /do listed for
each direction in Coe and Paterson (1969, their Table 3).
Therefore, we speculate that the mechanism of phase trans-
formation of a- to B-quartz is probably not related to that
of Dauphiné twinning in «-quartz, as the temperature differ-
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Figure 13. Examples of rock-forming minerals showing auxetic and
areally auxetic behaviours. Stereograms are all lower-hemisphere
equal-area projections and only the directions with negative Pois-
son’s ratio (a, b, ¢, e, g) or negative areal Poisson’s ratio (d, f, h)
are shown coloured in (i.e. other directions show positive values).
Crystallographic axes in pink. (a) Staurolite. (b) Illite-smectite. (c—
d) «-Quartz. (e-f) «-Quartz at the temperature of the phase trans-
formation to 8-Quartz (hexagonal). (g-h) Talc (c1, triclinic).

ence increases for those directions that maximise the elastic
strain energy under a constant applied stress. We also note
that similar phenomena may occur in pyroxenes (Coe, 1970;
Coe and Muller, 1973; Clément et al., 2018).

Visualisation of elastic anisotropy has been used to gain
new insights into the effects of intrinsic elastic stiffness on
the transformation from zircon to the high-pressure ZrSiO4
polymorph reidite (Timms et al., 2018). The occurrence of
lamellar reidite in shocked zircon from hyper-velocity im-
pact structures has been observed to be spatially limited to
low-U domains that have not accumulated radiation damage
of the lattice from the decay of U to Pb — a process known as
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Figure 14. Anisotropy of Poisson’s ratio in rock-forming minerals as a function of P (a, b) and T (c, d). Other than the well-known auxeticity
of a—B quartz around the phase transition (7 = 573 °C), most minerals display Poisson’s ratios of between 0 and 0.5. Talc (cl, triclinic) is
one exception, and the anisotropy of Poisson’s ratio decreases markedly with increasing P.
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Figure 15. Rock-forming minerals showing negative linear com-
pressibility (NLC) in certain directions. Stereograms are all lower-
hemisphere equal-area projections and only the directions with
NLC are shown coloured in (i.e. other directions show positive val-
ues). Crystallographic axes in pink. (a) Lizardite. (b) Talc (cl, tri-
clinic).

metamictisation (Cavosie et al., 2015; Erickson et al., 2017).
Using elastic constants measured for variably metamict zir-
con (Ozkan, 1976; Ozkan and Jamieson, 1978), Timms et
al. (2018) illustrated that the process of metamictisation sig-
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nificantly reduces maxima of £, G and v in zircon, result-
ing in a more compliant, isotropic structure. These authors
argued that metamict domains in zircon grains are not elas-
tically stiff enough to support sufficiently high stresses and
pressures to facilitate the transformation to reidite, limiting
reidite lamellae to highly crystalline non-metamict domains
during the same shock event. This finding illustrates the de-
pendance of elastic properties on lattice defects and a poten-
tial role of intrinsic elastic properties in phase transforma-
tions.

5.3 Metamorphic reactions and equilibrium
thermodynamics

The role of elastic deformation in the thermodynamics of
preferred orientations and reactions at the scale of individual
grains has long been controversial (MacDonald, 1960; Brace,
1960; Kamb, 1961, and discussion therein; Paterson, 1973;
Wheeler, 2018). Debate has centred on the role, if any, of the
elastic strain energy; MacDonald (1960) and Brace (1960)
defined the Gibbs free energy of non-hydrostatically stressed
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in rock-forming minerals (n = 246) plotted against the Universal
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(b) Plot of Bmax/Bmin Versus AU. (c—e) Histograms of Bpin, Bmax
and Byry to show the distribution across all 246 datasets.

minerals in terms of the elastic strain energy, and thereby
implicitly defined equilibrium under these conditions. They
went on to assert that preferred orientations would de-
velop by the (re)orientation of crystals in a given stress
system such that their elastic strain energies were max-
imised. Wheeler (2018), following Kamb (1961) and Pater-
son (1973), asserts that there is no definable equilibrium in
non-hydrostatically stressed systems. Therefore, it is wrong
to equate the Gibbs energy for stressed systems of polycrys-
tals to the elastic strain energy. Moreover, the contribution
of the elastic strain energy to the chemical potentials along
stressed interfaces, through the Helmholtz free energy term,
is second order and therefore negligible (Wheeler, 2018).

5.4 Brittle cracking, decrepitation and dehydration

The magnitude of stresses around fluid-filled pores and
cracks developed within single crystalline grains under load
can be important for a variety of natural processes. The
decrepitation of fluid inclusions occurs when the stresses
around the pore exceed the local tensile strength, and the
fluid will then drain away. Previous analyses have been
rooted in linear elastic fracture mechanics, under an assump-
tion of elastic isotropy. Similarly, in reacting systems the de-
hydration of hydrous phases can lead to pore fluid overpres-
sures, which cracks the reacting grain and produces dehydra-

www.solid-earth.net/11/259/2020/

275

tion embrittlement (e.g. Raleigh and Paterson, 1965; Jung et
al., 2004). Accurate predictions of the stress levels sustain-
able by intra-crystalline pores and cracks are therefore vital
to understanding these fundamental mechanisms. Jaeger and
Cook (1969; and repeated by Pollard and Fletcher, 2005) as-
serted that the elastic anisotropy of rocks, measured as the ra-
tio of Young’s moduli Eyax/ Emin, 18 rarely as high as 2, and
therefore the effects of elastic anisotropy are minor to negli-
gible. Davis et al. (2017) used 3D boundary element models
to show that Poisson’s ratio and void (pore or crack) shape
can exert significant control on the local stresses at the void—
matrix boundary as a precursor to tensile or shear failure.

We have calculated the circumferential stresses around
crack-like voids developed within single elastically
anisotropic grains of selected minerals (Figs. 20 and
21). The model configuration follows that of Jaeger and
Cook (1969; derived from Green and Taylor, 1939), and it
is based on a thin 2D orthotropic plate with a single crack
of aspect ratio 5: 1. The assumption of orthotropy reduces
the required elastic constants to five (E1, E2, G, v21, V12).
We calculated the appropriate values of £, G and v from
polar plots of anisotropy for the [010] crystallographic plane
in each mineral using AnisoVis (see Figs. 4d, 5d—f). For
an applied uniaxial tensile load (op in Fig. 20) and a plane
strain assumption; the resulting anisotropy of circumferential
stress (ogg) at the void—matrix boundary is shown for four
different minerals in Fig. 21. Each polar plot shows the
ogp normalised by the applied load op in the [010] plane
and for two different configurations of the anisotropy with
respect to the load: o parallel to the direction of En,x (red
curves) and perpendicular to the direction of Emax (blue
curves). For both of the hydrous sheet silicates talc (cl;
Mainprice et al., 2008) and lizardite (Reynard et al., 2007),
the stresses display significant anisotropy (Fig. 21a and b),
with amplifications of 6—7 times the stress predicted by
assuming the crystal is isotropic (black curves, calculated
with VRH averages of E and v). These stresses are likely
significant for the failure of cracks or narrow fluid-filled
pores in dehydrating subducting slabs (Healy et al., 2009; Ji
et al., 2018). For the two feldspar examples, albite (Brown
et al., 2016) and sanidine (Waeselmann et al., 2016), the am-
plification of circumferential stress is also significant at 4-5
times the isotropic prediction. Again, these stresses imply
that fluid-filled pores in phenocrysts of these phases may
fail sooner than currently predicted under the assumption of
elastic isotropy. The restriction to 2D may appear limiting
in these simple illustrative models, but, pending the devel-
opment and analysis of fully 3D finite or boundary element
models of stresses around voids in elastically anisotropic
media, they can provide useful insights into the relative
magnitude of local stresses and brittle failure. Moreover,
we refute the suggestion from Jaeger and Cook (1969) that
as the anisotropy of Young’s modulus in rocks is low, the
anisotropy of stresses around pores and cracks is therefore
unimportant.
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Figure 17. (a) Anisotropy of rock-forming minerals (n = 246) using the elastic anisotropy diagram used in materials science, grouped by
mineral symmetry class. (b) Close-up of the data plotted in (a) with GY / GR in the range of 1 to 1.5 and K v /K R in the range of 1to 1.5.
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Figure 18. Anisotropy of Asil for Dauphiné twinning in «-quartz. Asil is the difference in the compliance sil between the twinned and un-
twinned orientations for each direction. (a) Stereogram (lower-hemisphere equal-area projection) and (b) a 3D representation surface, both
with the crystallographic reference axes marked. The directions represented by pale yellow-to-green colours will be favoured for twinning,

whereas the directions shown in blue will not.

6 Summary

We reiterate a key point made by Marmier et al. (2010) in
their analysis of chemical compounds: it’s only by visualis-
ing elastic anisotropies, preferably in 3D, that we can truly
perceive them and quantify their directions; this then allows
us to relate these elastic properties to the underlying crystal
structure and explore the consequences for their behaviour. In
developing AnisoVis and using it to quantify the anisotropy
of a specific mineral, we have presented multiple alternative
visualisations of the directional variation of commonly used
elastic properties such as Young’s modulus (E), Poisson’s
ratio (v), shear modulus (G) and linear compressibility (8).
Used in combination, these depictions serve to increase our

Solid Earth, 11, 259-286, 2020

understanding of the relationships between the anisotropy of
elastic properties and the underlying crystal symmetry and
structure.

For example, we note previously unreported directions in
certain minerals with negative Poisson’s ratios and nega-
tive linear compressibilities. A potentially important conse-
quence of these findings is that there must also be specific
directions along which these properties — Poisson’s ratio and
linear compressibility — are 0. These directions will form sur-
faces in 3D which represent the boundary between the fol-
lowing domains: (a) domains of positive and negative Pois-
son’s ratio (both “regular” and areal), along which a uniax-
ially applied load will produce no lateral strain, and (b) do-
mains of positive and negative linear compressibility, along

www.solid-earth.net/11/259/2020/
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Figure 19. Variation in strain (normal and shear) and elastic strain energy for different applied loads in a-quartz at 500 °C (Lakshtanov et al.,
2007). The same compressive stress (o1 = —1000 MPa, 0y = 03 = —300 MPa) is applied along the ¢ (first row), m (second row), r (third row)
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Figure 20. Schematic outline for models of narrow cracks in thin
2D orthotropic plates. The crack is subjected to a uniaxial tensile
stress, and plane strain is assumed. The colours of the crack outlines
correspond to the circumferential stress predictions in Fig. 21.
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which an applied hydrostatic load will produce no shortening
or stretching. These surfaces and directions in rock-forming
minerals may yet lead to new discoveries in the physical be-
haviour of natural systems and novel applications in materi-
als science or engineering (e.g. Wu et al., 2015).

Considering the results from the database of 246 sets of
elastic properties, we observe that

— significant elastic anisotropy of rock-forming minerals
is much more common than previously reported; that
is, many minerals — 33 of the 86 we analysed — have
auxetic directions and some are areally auxetic;

— the elastic anisotropy of rock-forming minerals is wider
than previously reported, with commonly assumed “nat-
ural limits” frequently exceeded; that is, Poisson’s ratio
for many minerals is either < 0 or > 0.5.
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Figure 21. Predictions of stresses around cracks in thin 2D or-
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cumferential stress (0pg) normalised by the applied uniaxial tensile
load (o(). (a) Talc (cl, triclinic), (010) plane. (b) Lizardite, (010)
plane. (c) Albite, (010). (d) Sanidine, (010).

For specific minerals, we also observe that

— elastic anisotropy has consequences for intra-crystalline
stresses under applied strain (and vice versa); the dif-
ference between an assumption of isotropy and using
the full elastic anisotropy is often of the order of tens
of megapascals (even for small strains) — i.e. likely to
be significant for the deformation around voids such as
pores and cracks, especially in dehydrating or decrepi-
tating systems;

— elastic anisotropy is important for mechanical (deforma-
tion) twining, especially Dauphiné twinning in quartz
but probably in other minerals too;

— coherent phase transformations, such as the ¢—g tran-
sition in quartz, show a clear correlation with the mag-
nitude of elastic strain energy per unit volume and the
stress dependence of the transition temperature.
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Further work

We are not currently limited by data; we need to process
the elasticity data we have and use it to improve our un-
derstanding of earth processes. In theoretical terms, perhaps
the biggest advance would come from a solution to the Es-
helby problem for an anisotropic inclusion in an anisotropic
host, for ellipsoids of general shape and orientation, and for
the points inside and outside the inclusion. This problem is
non-trivial but would be of direct relevance to the inclusion-
host studies estimating pressure histories and for mechani-
cal problems involving voids and cracks in anisotropic crys-
tals, including reacting systems. Numerical modelling stud-
ies of the deformation around voids and cracks might use-
fully incorporate a wider range of values of E and v. Visual-
isation of direction-specific elastic properties will be useful
for future investigations of the mechanics of twinning, dis-
locations, and fractures in a wide range of minerals. Earth-
quake focal mechanisms are known to depend on the elastic
anisotropy of the source region (Vavrycuk, 2005), and better
understanding of the anisotropies in rock-forming minerals
is informing models of fabrics in subducting slabs (Li et al.,
2018) and interpretations of microseismicity from commer-
cial hydraulic fracturing operations (Jia et al., 2018). A prac-
tical assessment of the contribution of elastic strain energy
to metamorphic reactions might involve the systematic map-
ping of major element chemistry around specific inclusions.

We believe that publicly available and easy-to-use soft-
ware tools like AnisoVis may be useful in teaching envi-
ronments to guide understanding of the links between min-
eral properties (elastic, acoustic, optical) and their underly-
ing symmetry and lattice structure. Following Nye’s origi-
nal text, other properties such as piezoelectric and thermal
conductivities could also be added and visualised (Tommasi
et al., 2001; Mainprice et al., 2015). Our AnisoVis MAT-
LAB source code and sample elasticity files have been made
available in open repositories so that other developers and
researchers will optimise and extend the functionality, and
“given enough eyeballs, all bugs are shallow” (Raymond,
1999).
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Appendix A: Benchmarks to previously published
anisotropic elastic properties

The outputs from AnisoVis, and the calculations underlying
them, have been benchmarked against previously published
examples, chiefly from chemistry and materials science liter-
ature. Figures produced by AnisoVis are shown below, with
one example per symmetry group, formatted to mimic the
plots in the original publication.

90

180

270

Figure Al. Benchmarks to Rovati (2004, their Fig. 4) for monoclinic cesium dihydrogen phosphate. Note the extreme auxeticity (negative
Poisson’s ratio) shown by this material.
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Figure A2. Benchmarks to Tan et al. (2015, their Figs. 2, 3 and 4) for orthorhombic ZIF-4, a zeolite. Plots shown for Young’s modulus, shear
modulus and Poisson’s ratio.
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Figure A3. Benchmarks to Tan et al. (2015, their Figs. 2, 3 and 4) for tetragonal ZIF-zni, a zeolite. Plots shown for Young’s modulus, shear
modulus and Poisson’s ratio.
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Figure A4. Benchmarks to Marmier et al. (2010, their Figs. 5 and 6) for cubic cesium. Note the auxetic nature of Poisson’s ratio.
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Figure AS. Benchmarks to Gunton and Saunders (1972, their Figs. 3 and 6) for trigonal arsenic.
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Figure A6. Benchmarks to Li (1976, their Fig. 3) for hexagonal thallium.

www.solid-earth.net/11/259/2020/ Solid Earth, 11, 259-286, 2020



282 D. Healy et al.: Elastic anisotropy in rock-forming minerals

920 90

vla*]

v [c]

180

(a) 270 (b) 270

Figure A7. Benchmarks to Mainprice et al. (2008, their Fig. 5) for triclinic talc (c1) at 0.0 GPa (a) and 3.9 GPa (b). The lower-pressure
example shows auxetic behaviour.
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Code and data availability. AnisoVis, including MATLAB source
code, a basic user guide and data files for mineral elasticity from
published sources, is freely available on GitHub (https://github.
com/DaveHealy- Aberdeen/AnisoVis, Healy, 2020a) and Math-
Works File Exchange (https://uk.mathworks.com/matlabcentral/
fileexchange/73177-anisovis, Healy, 2020b).
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