Articles | Volume 11, issue 1
https://doi.org/10.5194/se-11-37-2020
https://doi.org/10.5194/se-11-37-2020
Research article
 | Highlight paper
 | 
08 Jan 2020
Research article | Highlight paper |  | 08 Jan 2020

Can subduction initiation at a transform fault be spontaneous?

Diane Arcay, Serge Lallemand, Sarah Abecassis, and Fanny Garel

Related authors

Effects of basal drag on subduction dynamics from 2D numerical models
Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies
Solid Earth, 12, 79–93, https://doi.org/10.5194/se-12-79-2021,https://doi.org/10.5194/se-12-79-2021, 2021
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Tectonics
Selective inversion of rift basins in lithospheric-scale analogue experiments
Anindita Samsu, Weronika Gorczyk, Timothy Chris Schmid, Peter Graham Betts, Alexander Ramsay Cruden, Eleanor Morton, and Fatemeh Amirpoorsaeed
Solid Earth, 14, 909–936, https://doi.org/10.5194/se-14-909-2023,https://doi.org/10.5194/se-14-909-2023, 2023
Short summary
The link between Somalian Plate rotation and the East African Rift System: an analogue modelling study
Frank Zwaan and Guido Schreurs
Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023,https://doi.org/10.5194/se-14-823-2023, 2023
Short summary
Inversion of extensional basins parallel and oblique to their boundaries: inferences from analogue models and field observations from the Dolomites Indenter, European eastern Southern Alps
Anna-Katharina Sieberer, Ernst Willingshofer, Thomas Klotz, Hugo Ortner, and Hannah Pomella
Solid Earth, 14, 647–681, https://doi.org/10.5194/se-14-647-2023,https://doi.org/10.5194/se-14-647-2023, 2023
Short summary
Magnetic fabric analyses of basin inversion: a sandbox modelling approach
Thorben Schöfisch, Hemin Koyi, and Bjarne Almqvist
Solid Earth, 14, 447–461, https://doi.org/10.5194/se-14-447-2023,https://doi.org/10.5194/se-14-447-2023, 2023
Short summary
The influence of crustal strength on rift geometry and development – insights from 3D numerical modelling
Thomas B. Phillips, John B. Naliboff, Ken J. W. McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen
Solid Earth, 14, 369–388, https://doi.org/10.5194/se-14-369-2023,https://doi.org/10.5194/se-14-369-2023, 2023
Short summary

Cited articles

Abecassis, S., Arcay, D., and Lallemand, S.: Subduction initiation at fracture zones: conditions and various modes, in: abstracts of the GeoMod conference, 17–20 October, p. 14, La Grande Motte, France, available at: http://geomod2016.gm.univ-montp2.fr/Home.html (last access: 20 December 2019), 2016. a, b
Adam, C., King, S., Vidal, V., Rabinowicz, M., Jalobeanu, A., and Yoshida, M.: Variation of the subsidence parameters, effective thermal conductivity, and mantle dynamics, Earth Planet. Sc. Lett., 426, 130–142, 2015. a
Afonso, J. C., Zlotnik, S., and Fernandez, M.: Effects of compositional and rheological stratifications on small-scale convection under the oceans: Implications for the thickness of oceanic lithosphere and seafloor flattening, Geophys. Res. Lett., 35, L20308, https://doi.org/10.1029/2008GL035419, 2008. a
Arcay, D.: Dynamics of interplate domain in subduction zones: influence of rheological parameters and subducting plate age, Solid Earth, 3, 467–488, https://doi.org/10.5194/se-3-467-2012, 2012. a
Arcay, D.: Modelling the interplate domain in thermo-mechanical simulations of subduction: Critical effects of resolution and rheology, and consequences on wet mantle melting, Phys. Earth Planet. Inter., 269, 112–132, https://doi.org/10.1016/j.pepi.2017.05.008, 2017. a, b
Download
Short summary
We propose a new exploration of the concept of spontaneous lithospheric collapse at a transform fault (TF) by performing a large study of conditions allowing instability of the thicker plate using 2-D thermomechanical simulations. Spontaneous subduction is modelled only if extreme mechanical conditions are assumed. We conclude that spontaneous collapse of the thick older plate at a TF evolving into mature subduction is an unlikely process of subduction initiation at modern Earth conditions.