Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.165 IF 4.165
  • IF 5-year value: 4.075 IF 5-year
    4.075
  • CiteScore value: 4.28 CiteScore
    4.28
  • SNIP value: 1.501 SNIP 1.501
  • SJR value: 1.060 SJR 1.060
  • IPP value: 4.21 IPP 4.21
  • h5-index value: 29 h5-index 29
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 27 Scimago H
    index 27
Volume 5, issue 1
Solid Earth, 5, 447-459, 2014
https://doi.org/10.5194/se-5-447-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Lithosphere-cryosphere interactions

Solid Earth, 5, 447-459, 2014
https://doi.org/10.5194/se-5-447-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Jun 2014

Research article | 10 Jun 2014

Lithosphere and upper-mantle structure of the southern Baltic Sea estimated from modelling relative sea-level data with glacial isostatic adjustment

H. Steffen1, G. Kaufmann2, and R. Lampe3 H. Steffen et al.
  • 1Lantmäteriet, Lantmäterigatan 2c, 80182 Gävle, Sweden
  • 2Freie Universität Berlin, Institut für Geologische Wissenschaften, Fachrichtung Geophysik, Malteserstr. 74–100, Haus D, 12249 Berlin, Germany
  • 3Ernst-Moritz-Arndt-Universität Greifswald, Institut für Geographie und Geologie, F.-L.-Jahn-Str. 16, 17487 Greifswald, Germany

Abstract. During the last glacial maximum, a large ice sheet covered Scandinavia, which depressed the earth's surface by several 100 m. In northern central Europe, mass redistribution in the upper mantle led to the development of a peripheral bulge. It has been subsiding since the begin of deglaciation due to the viscoelastic behaviour of the mantle.

We analyse relative sea-level (RSL) data of southern Sweden, Denmark, Germany, Poland and Lithuania to determine the lithospheric thickness and radial mantle viscosity structure for distinct regional RSL subsets. We load a 1-D Maxwell-viscoelastic earth model with a global ice-load history model of the last glaciation. We test two commonly used ice histories, RSES from the Australian National University and ICE-5G from the University of Toronto.

Our results indicate that the lithospheric thickness varies, depending on the ice model used, between 60 and 160 km. The lowest values are found in the Oslo Graben area and the western German Baltic Sea coast. In between, thickness increases by at least 30 km tracing the Ringkøbing-Fyn High. In Poland and Lithuania, lithospheric thickness reaches up to 160 km. However, the latter values are not well constrained as the confidence regions are large. Upper-mantle viscosity is found to bracket [2–7] × 1020 Pa s when using ICE-5G. Employing RSES much higher values of 2 × 1021 Pa s are obtained for the southern Baltic Sea. Further investigations should evaluate whether this ice-model version and/or the RSL data need revision. We confirm that the lower-mantle viscosity in Fennoscandia can only be poorly resolved.

The lithospheric structure inferred from RSES partly supports structural features of regional and global lithosphere models based on thermal or seismological data. While there is agreement in eastern Europe and southwest Sweden, the structure in an area from south of Norway to northern Germany shows large discrepancies for two of the tested lithosphere models. The lithospheric thickness as determined with ICE-5G does not agree with the lithosphere models. Hence, more investigations have to be undertaken to sufficiently determine structures such as the Ringkøbing-Fyn High as seen with seismics with the help of glacial isostatic adjustment modelling.

Publications Copernicus
Special issue
Download
Citation
Share