Practical analytical solutions for benchmarking of 2-D and 3-D geodynamic Stokes problems with variable viscosity

I. Yu. Popov2, I. S. Lobanov2, S. I. Popov2, A. I. Popov2, and T. V. Gerya1

1Institute of Geophysics, Department of Earth Sciences, Swiss Federal Institute of Technology Zurich (ETH), 5 Sonneggstrasse, 8092 Zurich, Switzerland

2St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 49 Kronverkskiy, St. Petersburg, 197101, Russia

Correspondence to: I. Yu. Popov (popov1955@gmail.com)

Received: 20 November 2013 – Published in Solid Earth Discuss.: 9 December 2013
Revised: 15 April 2014 – Accepted: 22 April 2014 – Published: 10 June 2014

Abstract. Geodynamic modeling is often related with challenging computations involving solution of the Stokes and continuity equations under the condition of highly variable viscosity. Based on a new analytical approach we have developed particular analytical solutions for 2-D and 3-D incompressible Stokes flows with both linearly and exponentially variable viscosity. We demonstrate how these particular solutions can be converted into 2-D and 3-D test problems suitable for benchmarking numerical codes aimed at modeling various mantle convection and lithospheric dynamics problems. The main advantage of this new generalized approach is that a large variety of benchmark solutions can be generated, including relatively complex cases with open model boundaries, non-vertical gravity and variable gradients of the viscosity and density fields, which are not parallel to the Cartesian axes. Examples of respective 2-D and 3-D MatLab codes are provided with this paper.

1 Introduction

Numerical modeling of geodynamic processes is recognized as a challenging computational problem which requires use of advanced computational techniques and development of powerful numerical tools (e.g., Ismail-Zadeh and Tackley, 2010, and references therein). One of the major challenges concerns solving of the inertia-free Stokes equation coupled to the incompressible continuity equation in a combination with strong viscosity variations in the computational domain. Consequently, benchmarking of numerical codes against analytical and numerical solutions constrained for various mechanical and thermomechanical Stokes flow problems is a common practice in computational geodynamics (e.g., Blankenbach et al., 1989; Moresi et al., 1996; van Keken et al., 2003, 2007; Deubelbeiss and Kaus, 2008; Duretz et al., 2011; Gerya and Yuen, 2003; Popov, 2014; Lobanov et al., 2014; Popov and Sobolev, 2008; Tackley and King, 2003; Torrance and Turcotte, 1971; Zhong and Gurnis, 1994). Available analytical and numerical solutions are mostly two-dimensional and include:

- 2-D mantle convection with constant and variable viscosity (Hager and O’Connell, 1981; Revenaugh and Parsons, 1987; Blankenbach et al., 1989);
- 2-D thermochemical convection (van Keken et al., 1997);
- 2-D buoyancy-driven flows for strongly varying viscosity (Zhong, 1996; Moresi et al., 1996; Gerya and Yuen, 2003);
- 2-D mechanical and thermomechanical channel and Couette flows for constant and variable viscosity (Turcotte and Schubert, 2002; Gerya and Yuen, 2003; Gerya, 2010);
- 2-D flow around deformable elliptic inclusions (Schmid and Podladchikov, 2003);
- 2-D Rayleigh–Taylor instability (Ramberg, 1968; Kaus and Becker, 2007);
2-D thermomechanical corner flows in subduction zones (van Keken et al., 2008);

2-D spontaneous subduction with a free surface (Schmeling et al., 2008);

2-D buoyancy-driven flows with a free surface (Cramer et al., 2012);

2-D numerical sandbox experiments (Buiter et al., 2006);

3-D mantle convection in Cartesian geometry (Busse et al., 1993; Albers, 2000);

3-D mantle convection in spherical geometry (Zhong et al., 2008);

3-D infinitesimal and finite amplitude folding instability (Kaus and Schmalholz, 2006);

2-D and 3-D shear band formation and plasticity implementation (Lemiale et al., 2008; Kaus, 2010; Thieulot, 2011).

Numerical sandbox experiments (Buiter et al., 2006), (Gerya and Yuen, 2007), (Thieulot, 2011) and (Gerya, 2010);

3-D convection at infinite Prandtl numbers in Cartesian geometry (Busse et al., 1993);

Falling block (Gerya and Yuen, 2003; Gerya, 2010; Thieulot, 2011).

These solutions are constrained for a number of well defined model setups, which are of potential significance for various situations which numerical codes may face during real geodynamic simulations. Availability and broad range of 2-D and 3-D benchmark solutions are, therefore, critical for the development and testing of the next generation of numerical geodynamic modeling software which aims to combine rheological complexity of constitutive laws with adaptive grid resolution to on both global and regional scales (e.g., Moresi et al., 2003; Dabrowski et al., 2008; Tackley, 2008; Stadler et al., 2010; Gerya et al., 2013).

In the present paper we aim to significantly expand availability of benchmark solutions for both 2-D and 3-D variable-viscosity Stokes flows. In contrast with previous studies, we prefer not to start from any prescribed model setups but rather derive general analytical solutions, which are potentially suitable for generating a broad range of test problems. We derive generalized solutions for incompressible Stokes problems with linearly and exponentially variable viscosity. In the following we demonstrate how these generalized solutions can be converted into 2-D and 3-D test problems suitable for benchmarking numerical codes. Finally, based on the obtained benchmark problems, we show examples of numerical convergence tests for staggered-grid discretizations schemes (e.g., Gerya and Yuen, 2003, 2007).

2 Two-dimensional solution

2.1 Formulation of 2-D equations with variable viscosity

Consider the plane flow, 2-D Stokes equations for the case of varying viscosity have the form

\[
2\eta \frac{\partial^2 v_x}{\partial x^2} + 2\frac{\partial \eta}{\partial x} \frac{\partial v_x}{\partial x} + \eta \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial \eta}{\partial y} \frac{\partial v_y}{\partial y} + \frac{\partial \eta}{\partial x} \frac{\partial v_x}{\partial y} + \frac{\partial \eta}{\partial y} \frac{\partial v_x}{\partial x} + 2 \frac{\partial \eta}{\partial x} \frac{\partial v_y}{\partial y} + \frac{\partial \eta}{\partial y} \frac{\partial v_y}{\partial x} = -\rho G_x,
\]

\[
2\frac{\partial^2 v_y}{\partial y^2} + \eta \frac{\partial^2 v_x}{\partial x \partial y} + \frac{\partial \eta}{\partial x} \frac{\partial v_x}{\partial y} + \frac{\partial \eta}{\partial y} \frac{\partial v_x}{\partial x} + 2 \frac{\partial \eta}{\partial x} \frac{\partial v_y}{\partial y} + \frac{\partial \eta}{\partial y} \frac{\partial v_y}{\partial x} = -\rho G_y,
\]

where \((v_x, v_y)\) is the flow velocity, \(\eta = \eta(x, y)\) is the viscosity, \(\rho\) is the pressure, \(\rho G_x, G_y\) is the gravitational force. Note that Eq. (3) is the continuity equation.

Let us change the variables \(v_x, v_y, P\) in such a way that

\[
\frac{\partial v_x}{\partial x} = \frac{1}{\eta} \frac{\partial u_x}{\partial x}, \quad \frac{\partial v_y}{\partial y} = \frac{1}{\rho} \frac{\partial u_y}{\partial y},
\]

\[
\frac{\partial v_y}{\partial x} = \frac{1}{\eta} \frac{\partial u_x}{\partial y}, \quad \frac{\partial v_x}{\partial y} = \frac{1}{\rho} \frac{\partial u_y}{\partial x},
\]

\[
1 \frac{\partial P}{\eta} = \frac{1}{\rho} \frac{\partial \tilde{\rho}}{\partial x}, \quad 1 \frac{\partial P}{\eta} = \frac{1}{\rho} \frac{\partial \tilde{\rho}}{\partial y}.
\]

The correctness conditions for such replacement are as follows:

\[
\frac{\partial}{\partial y} \left(\frac{1}{\eta} \frac{\partial u_x}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{1}{\rho} \frac{\partial u_y}{\partial y} \right),
\]

\[
\frac{\partial}{\partial x} \left(\frac{1}{\eta} \frac{\partial u_y}{\partial x} \right) = \frac{\partial}{\partial y} \left(\frac{1}{\rho} \frac{\partial u_x}{\partial y} \right),
\]

\[
\frac{\partial}{\partial y} \left(\frac{1}{\rho} \frac{\partial \tilde{\rho}}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{1}{\rho} \frac{\partial \tilde{\rho}}{\partial y} \right).
\]

These conditions lead to the following correlations:

\[
\frac{\partial \eta}{\partial x} \frac{\partial u_x}{\partial x} + \frac{\partial \eta}{\partial y} \frac{\partial u_x}{\partial y} = \frac{\partial \eta}{\partial x} \frac{\partial u_y}{\partial x}, \quad \frac{\partial \eta}{\partial y} \frac{\partial u_y}{\partial x} = \frac{\partial \eta}{\partial y} \frac{\partial u_x}{\partial y}.
\]

If we consider these conditions as a partial differential equations then we obtain the same characteristic equation for all these conditions:

\[
\frac{\partial \eta}{\partial x} dx + \frac{\partial \eta}{\partial y} dy = 0.
\]
Evidently, $\eta(x, y) = C$ is an integral of the equation. It is well known that an integral of the characteristic equation gives one good new variable. Namely, $\eta = \eta(x, y)$ is a good new variable (the second coordinate should be orthogonal to the first one). Note that the assumption that the viscosity varies is now crucial because we use the viscosity as a new coordinate (instead of the standard Cartesian spatial coordinate). Hence, the solutions of our equations, which determine the correctness of the replacement suggested above, are

$$u_x = \Phi(\eta), \quad u_y = \Psi(\eta), \quad \tilde{P} = \tilde{P}(\eta).$$

After the replacement, the Stokes Eqs. (1, 2) and the continuity condition (3) transform to the following form:

$$2\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_y}{\partial y^2} - \eta \frac{\partial \tilde{P}}{\partial x} = -\rho G_x,$$

$$2\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_y}{\partial y^2} - \eta \frac{\partial \tilde{P}}{\partial y} = -\rho G_y,$$

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} = 0.$$ \hspace{1cm} (9)

Inserting the expressions for u_x, u_y into Eqs. (7–9), one obtains the following equations:

$$2\Phi^\prime \frac{\partial^2 \eta}{\partial x^2} + 2\Phi^\prime\prime \left(\frac{\partial \eta}{\partial x}\right)^2 + \Phi^\prime \frac{\partial^2 \eta}{\partial y^2} + \Phi^\prime\prime \left(\frac{\partial \eta}{\partial y}\right)^2 +$$

$$\Psi^\prime \frac{\partial^2 \eta}{\partial y^2} + \Psi^\prime\prime \left(\frac{\partial \eta}{\partial y}\right)^2 + \Psi^\prime \frac{\partial^2 \eta}{\partial x^2} + \Psi^\prime\prime \left(\frac{\partial \eta}{\partial x}\right)^2 +$$

$$\Phi^\prime \frac{\partial^2 \eta}{\partial y^2} + \Phi^\prime\prime \left(\frac{\partial \eta}{\partial y}\right)^2 + \Phi^\prime \frac{\partial^2 \eta}{\partial x^2} + \Phi^\prime\prime \left(\frac{\partial \eta}{\partial x}\right)^2 +$$

$$\Phi^\prime \frac{\partial \eta}{\partial x} + \Psi^\prime \frac{\partial \eta}{\partial y} = 0.$$ \hspace{1cm} (12)

2.2 Linearly varying viscosity

To obtain the solutions of Eqs. (10–12) we make some assumptions. In particular, in this section we assume, first, that the viscosity η is a linear function of the Cartesian coordinates,

$$\eta = ax + by + c,$$ \hspace{1cm} (13)

where a, b, c are non-zero constants. Second, the restriction concerning the gravitational terms takes place: $\rho(aG_y - bG_x)$ and $\rho(bG_y + aG_x)$ are assumed to be functions of one variable – viscosity. It means that ρG_y and ρG_x are functions of η only. Introduce functions f, f_1:

$$f(\eta) = \frac{\rho(aG_y - bG_x)}{(a^2 + b^2)^2}, \quad f_1(\eta) = \frac{\rho(bG_y + aG_x)}{a^2 + b^2}.$$ \hspace{1cm} (14)

Under these assumptions one gets the following system of equations:

$$\Phi^\prime\prime(2a^2 + b^2) + \Psi^\prime\prime ab - an\tilde{P}^\prime = -\rho G_x,$$

$$\Psi^\prime\prime (a^2 + 2b^2) + \Phi^\prime\prime ab - an\tilde{P} = -\rho G_y,$$

$$\Phi^\prime a + \Psi^\prime b = 0.$$ \hspace{1cm} (15)

That gives us

$$u_x = \Phi = b \int_{\eta_1}^{\eta} d\eta_1 \int_{\eta_2}^{\eta} d\eta_2 f(\eta_2) + bc_1 \eta + c_2,$$

$$u_y = \Psi = -a \int_{\eta_1}^{\eta} d\eta_1 \int_{\eta_2}^{\eta} d\eta_2 f(\eta_2) - ac_1 \eta + c_3,$$

$$\tilde{P} = \int_{\eta_1}^{\eta} d\eta_1 \frac{f_1(\eta_1)}{\eta_1} + c_4.$$ \hspace{1cm} (16)

Correspondingly, one obtains v_x, v_y, P:

$$v_x = b \int_{\eta_1}^{\eta} d\eta_1 \int_{\eta_2}^{\eta} d\eta_2 f(\eta_2) + bc_1 \log \eta + c_2,$$

$$v_y = a \int_{\eta_1}^{\eta} d\eta_1 \int_{\eta_2}^{\eta} d\eta_2 f(\eta_2) + ac_1 \log \eta + c_3.$$ \hspace{1cm} (17)

Finally,

$$v_x = b \int_{\eta_1}^{\eta} d\eta_1 \int_{\eta_2}^{\eta} d\eta_2 f(\eta_2) \log \left(\frac{\eta}{\eta_2}\right) + bc_1 \log \eta + c_2.$$ \hspace{1cm} (16)

Analogous transformation takes place for v_y:

$$v_y = -a \int_{\eta_1}^{\eta} d\eta_1 \int_{\eta_2}^{\eta} d\eta_2 f(\eta_2) - ac_1 \log \eta + c_3.$$ \hspace{1cm} (17)

The expression for the pressure is as follows:

$$P = \int_{\eta_1}^{\eta} d\eta_1 f_1(\eta_1) + c_4.$$ \hspace{1cm} (18)
In particular, in the case of constant gravitational terms, i.e., for \(f(\eta) = A = \text{const} \), \(f_1(\eta) = A_1 = \text{const} \) one has
\[
\begin{align*}
v_x &= bA\eta + b\tilde{c}_1 \log \eta + \tilde{c}_2, \\
v_y &= -aA\eta - a\tilde{c}_1 \log \eta + \tilde{c}_3, \\
P &= A_1\eta + \tilde{c}_4.
\end{align*}
\]
Consider a more complicated case when the density is a linear function of the viscosity: \(\rho = \beta_1 \eta + \beta_2 \). Then,
\[
f(\eta) = a_1 \eta + a_2, \quad f_1(\eta) = b_1 \eta + b_2,
\]
where constants \(a_1, a_2, b_1, b_2 \) are as follows:
\[
a_1 = \beta_1 \frac{aG_y - bG_x}{(a^2 + b^2)^2}, \quad a_2 = \beta_2 \frac{(aG_y - bG_x)}{(a^2 + b^2)^2}, \quad b_1 = \beta_1 \frac{(bG_x + aG_y)}{a^2 + b^2}, \quad b_2 = \beta_2 \frac{(bG_x + aG_y)}{a^2 + b^2}.
\]
Note that in this case the continuity Eq. (3) should be rewritten in a more general form:
\[
\frac{\partial (\rho v_x)}{\partial x} + \frac{\partial (\rho v_y)}{\partial y} = 0. \tag{19}
\]
Equations (16)–(18) gives us
\[
\begin{align*}
v_x &= -b(a_1/2 + a_2 - c_1) \log \eta + \frac{1}{4} ba_1 \eta^2 + ba_2 \eta \\
&\quad - \frac{1}{4} a_1 b - a_2 b + c_2, \\
v_y &= a(a_1/2 + a_2 - c_1) \log \eta - \frac{1}{4} aa_1 \eta^2 - aa_2 \eta \\
&\quad + \frac{1}{4} a_1 a + a_2 a + c_3, \\
P &= \frac{1}{2} b_1 \eta^2 + b_2 \eta - \frac{1}{2} b_1 - b_2 + c_4.
\end{align*}
\]
The continuity Eq. (19) gives us the relation between \(c_2, c_3 \):
\[ac_2 + bc_3 = 0.\]

2.3 Exponentially varying viscosity

Let us construct the second benchmark solution. Now we assume that the viscosity is the exponential function of the Cartesian coordinates:
\[
\eta = \exp(ax + by). \tag{20}
\]
General consideration up to Eqs. (10–12) is the same as earlier. By inserting Eq. (20) into Eqs. (10–12) and taking into account that
\[
\frac{\partial \eta}{\partial x} = a\eta, \quad \frac{\partial \eta}{\partial y} = b\eta,
\]
one obtains the following system of equations:
\[
\begin{align*}
(2a^2 + b^2)(\Phi'' \eta^2 + \Phi' \eta) + ab(\Psi'' \eta^2 + \Psi' \eta) \\
- a \tilde{P}' \eta^2 &= - \rho G_x, \\
ab(\Phi'' \eta^2 + \Phi' \eta) + (a^2 + 2b^2)(\Psi'' \eta^2 + \Psi' \eta) \\
- b \tilde{P}' \eta^2 &= - \rho G_y, \\
a \Phi' + b \Psi' &= 0.
\end{align*}
\]
Using the last relation, we exclude \(\Psi \) from the first two equations:
\[
\begin{align*}
(a^2 + b^2)(\Phi'' \eta^2 + \Phi' \eta) - a \tilde{P}' \eta^2 &= - \rho G_x, \\
- \frac{a^3 + ab^2}{b} (\Phi'' \eta^2 + \Phi' \eta) - b \tilde{P}' \eta^2 &= - \rho G_y, \tag{21}
\end{align*}
\]
One can see that we obtain a linear algebraic system with respect to \((\Phi'' \eta^2 + \Phi' \eta) \) and \(\tilde{P}' \). The solution is as follows:
\[
\tilde{P}' = f_1(\eta), \tag{22}
\]
\[
\Phi'' \eta^2 + \Phi' \eta = bf(\eta). \tag{23}
\]
Remark. It is interesting that these formulas contain the same functions \(f(\eta) \), \(f_1(\eta) \) as in the previous section.

Equation (23) is a well-known Euler ordinary differential equation. One can get its solution for arbitrary function \(f \):
\[
u_1(\eta) = b \int_\eta^{\eta_1} \log \left(\frac{\eta}{\eta_1} \right) \frac{f(\eta)}{\eta_1} d\eta_1 + bc_1 \log \eta + c_2. \tag{24}
\]
Taking into account the relation in Eq. (21), one obtains \(u_2 \):
\[
u_2(\eta) = -a \int_\eta^{\eta_1} \log \left(\frac{\eta}{\eta_1} \right) \frac{f(\eta)}{\eta_1} d\eta_1 - ac_1 \log \eta + c_3. \tag{25}
\]
Taking into account Eqs. (4, 5) one obtains \(v_x, v_y \):
\[
u_x = b \int_\eta^{\eta_1} \frac{d\eta_1}{\eta_2} \frac{f(\eta_2)}{\eta_2} - bc_1 \frac{1}{\eta} + bc_1 + c_2,
\]
\[
u_y = -a \int_\eta^{\eta_1} \frac{d\eta_1}{\eta_2} \frac{f(\eta_2)}{\eta_2} - ac_1 \frac{1}{\eta} - ac_1 + c_3. \tag{26}
\]
As for the pressure, we obtain it from Eq. (22) by taking into account Eq. (6):

\[\bar{P} = \int_1^\eta \frac{f_1(\eta)}{\eta_1} \frac{d\eta_1}{\eta_1} + c_4. \]

Hence,

\[P = \int_1^\eta \frac{f_1(\eta)}{\eta_1} \frac{d\eta_1}{\eta_1} + c_4. \quad (28) \]

One can compare Eqs. (26–28) with Eqs. (16–18).

For a simple particular case (constant gravitational term) when \(f(\eta) = A = \text{const}, \) \(f_1(\eta) = A_1 = \text{const} \) one has

\[
\begin{align*}
v_x &= -\frac{b(A + c_1)}{\eta} - \frac{bA \log \eta}{\eta} + \tilde{c}_2, \\
v_y &= \frac{a(A + c_1)}{\eta} + \frac{A \log \eta}{\eta} + \tilde{c}_3, \\
P &= A_1 \log \eta + c_4 - b_1,
\end{align*}
\]

where \(\tilde{c}_2 = ac_1 + c_2, \tilde{c}_3 = -ac_1 + c_3. \)

For more a complicated case when the density is a linear function of the viscosity \(\rho = \beta \eta + \beta_3, \) i.e.,

\[
f(\eta) = a_1 \eta + a_2, \quad f_1(\eta) = b_1 \eta + b_2.
\]

where constants \(a_1, a_2, b_1, b_2 \) are the same as in the previous section. The continuity equation should be written in a more general form Eq. (19). It is simple to evaluate integrals in Eqs. (26–28). In such a way one obtains

\[
\begin{align*}
v_x &= ba_1 \log \eta + \frac{b(a_1 - a_2 - c_1)}{\eta} - ba_2 \log \eta + \tilde{c}_2, \\
v_y &= -aa_1 \log \eta - \frac{a(a_1 - a_2 - c_1)}{\eta} + aa_2 \log \eta + \tilde{c}_3, \\
P &= b_1 \eta + b_2 \log \eta + \tilde{c}_4,
\end{align*}
\]

where \(\tilde{c}_2 = c_2 + bc_1 + ba_2 - ba_1, \tilde{c}_3 = c_3 + aa_1 - aa_2 - ac_1, \tilde{c}_4 = c_4 - b_1. \) The continuity Eq. (19) gives us the same relation as earlier:

\[ac_2 + bc_3 = 0. \]

3 Three-dimensional case

3.1 Formulation of 3-D equations with variable viscosity

The situation in the 3-D case is similar to that for 2-D. In particular, we can realize the same procedure as in the 2-D case with some additional restrictions. The initial system of equations is as follows:

\[
\begin{align*}
2\eta \frac{\partial^2 v_x}{\partial \eta^2} + \frac{\partial \eta \frac{\partial v_x}{\partial \eta}}{\partial \eta} + \frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} + \frac{\partial \eta \frac{\partial v_x}{\partial \eta}}{\partial y} &+ \frac{\partial \eta \frac{\partial v_x}{\partial \eta}}{\partial z} - \frac{\partial P}{\partial x} = -\rho G_x, \\
\frac{\partial^2 v_y}{\partial \eta^2} + \frac{\partial \eta \frac{\partial v_y}{\partial \eta}}{\partial \eta} + \frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} + \frac{\partial \eta \frac{\partial v_y}{\partial \eta}}{\partial x} &+ \frac{\partial \eta \frac{\partial v_y}{\partial \eta}}{\partial z} - \frac{\partial P}{\partial y} = -\rho G_y, \\
\frac{\partial^2 v_z}{\partial \eta^2} + \frac{\partial \eta \frac{\partial v_z}{\partial \eta}}{\partial x} + \frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} + \frac{\partial \eta \frac{\partial v_z}{\partial \eta}}{\partial y} &+ \frac{\partial \eta \frac{\partial v_z}{\partial \eta}}{\partial z} - \frac{\partial P}{\partial z} = -\rho G_z, \\
\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} &= 0.
\end{align*}
\]

The replacement of the variables \(v_x, v_y, v_z, P \) by \(u_x, u_y, u_z, \bar{P} \) is analogous to that in the two-dimensional case:

\[
\begin{align*}
\frac{\partial u_x}{\partial x} &= \frac{1}{\eta} \frac{\partial u_x}{\partial y} = \frac{1}{\eta} \frac{\partial u_x}{\partial \eta} , \\
\frac{\partial v_x}{\partial x} &= \frac{1}{\eta} \frac{\partial v_x}{\partial y} = \frac{1}{\eta} \frac{\partial v_x}{\partial \eta} , \\
\frac{\partial v_y}{\partial x} &= \frac{1}{\eta} \frac{\partial v_y}{\partial y} = \frac{1}{\eta} \frac{\partial v_y}{\partial \eta} , \\
\frac{\partial v_z}{\partial x} &= \frac{1}{\eta} \frac{\partial v_z}{\partial y} = \frac{1}{\eta} \frac{\partial v_z}{\partial \eta} ,
\end{align*}
\]

The correctness conditions for such replacement are as follows:

\[
\begin{align*}
\frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta} &= \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta}, \\
\frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta} &= \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta}, \quad \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta} = \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta}, \\
\frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta} &= \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta}, \quad \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta} = \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta}, \\
\frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta} &= \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta}, \quad \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta} = \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta}, \\
\frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta} &= \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta}, \quad \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta} = \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta}, \\
\frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta} &= \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta}, \quad \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta} = \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta}, \\
\frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta} &= \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta}, \quad \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta} = \frac{\partial \eta \frac{\partial u_x}{\partial x}}{\partial \eta}.
\end{align*}
\]
The characteristic equations for each triplet of equations, i.e., for \(u_x, u_y, u_z, \tilde{P} \) are the same (analogously to 2-D case). The solutions for these conditional equations are

\[
 u_x = \Phi(\eta), \quad u_y = \Psi(\eta), \quad u_z = \Gamma(\eta), \quad \tilde{P} = \tilde{P}(\eta).
\]

These relations give us correctness of the above introduced replacement for arbitrarily varying viscosity. However, it allows one to obtain the solution of the Stokes continuity equations only under some assumptions concerning the viscosity.

3.2 Linearly varying viscosity – 3-D case

Below we will assume (analogously to 2-D case, Eq. 13) that

\[
 \eta = ax + by + cz + e,
\]

where \(a, b, c, e \) are non-zero constants. Moreover, in the 3-D case we need the following restriction for the gravitational terms (compare with Eq. 14): \(\rho G_x, \rho G_y, \rho G_z \) are functions of one variable – viscosity (for example, these terms may be constant).

Making the substitution (Eq. 31) in the system (Eq. 29), one transforms it to the form,

\[
\begin{align*}
 2\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} + \frac{\partial^2 u_z}{\partial x^2} + 2\frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2} + \frac{\partial^2 u_z}{\partial x^2} + 2\frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2} + 2\frac{\partial^2 u_z}{\partial z^2} + \eta a \frac{\partial \tilde{P}}{\partial z} &= -\rho G_x, \\
 \frac{\partial^2 u_y}{\partial x^2} + 2\frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2} + \eta c \frac{\partial \tilde{P}}{\partial z} &= -\rho G_y, \\
 \frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2} + 2\frac{\partial^2 u_z}{\partial z^2} + \eta b \frac{\partial \tilde{P}}{\partial z} &= -\rho G_z,
\end{align*}
\]

\[
\frac{\partial u_x}{\partial x} + \frac{\partial u_x}{\partial y} + \frac{\partial u_z}{\partial z} = 0.
\]

Hence,

\[
\begin{align*}
 \Phi''(a^2 + b^2 + c^2) - \eta \Phi &= -\rho G_x, \\
 \Psi''(a^2 + b^2 + c^2) - \eta \Psi' &= -\rho G_y, \\
 \Gamma''(a^2 + b^2 + c^2) + \Phi'' \Gamma' + \Psi'' \Gamma' - \eta c \Gamma &= -\rho G_z, \\
 \Phi' + \Psi' + \Gamma' &= 0.
\end{align*}
\]

The first three equations gives one a linear algebraic system with respect to \(\Phi'' \), \(\Psi'' \), \(\Gamma'' \) which can be solved without difficulties. Then, one gets \(\Gamma'' \) from the last equation of the system. To be correct, the obtained expressions should be functions of one variable – viscosity. It is ensured by our assumption concerning the gravitational terms. The result is as follows:

\[
\begin{align*}
 \Phi'' &= \frac{\rho(G_x ab + G_z ac - G_y(b^2 + c^2))}{(a^2 + b^2 + c^2)^2} = f_x(\eta), \\
 \Psi'' &= \frac{\rho(G_x ab + G_z bc - G_y(a^2 + b^2))}{(a^2 + b^2 + c^2)^2} = f_y(\eta), \\
 \Gamma'' &= \frac{\rho(G_x ac + G_y bc - G_z(a^2 + b^2))}{(a^2 + b^2 + c^2)^2} = f_z(\eta), \\
 \tilde{P}' &= \frac{\rho(G_x a + G_y b + G_z c)}{\eta(a^2 + b^2 + c^2)} = f_p(\eta).
\end{align*}
\]

Here we defined four functions: \(f_x(\eta), f_y(\eta), f_z(\eta), f_p(\eta) \). The obtained expressions are analogous to that in Eq. (15). Correspondingly, the integration is analogous, and one obtains

\[
\begin{align*}
 v_x &= \int d\eta_2 f_x(\eta_2) \log \left(\frac{\eta}{\eta_2} \right) + c_{1x} \log \eta + c_{2x}, \\
 v_y &= \int d\eta_2 f_y(\eta_2) \log \left(\frac{\eta}{\eta_2} \right) + c_{1y} \log \eta + c_{2y}, \\
 v_z &= \int d\eta_2 f_z(\eta_2) \log \left(\frac{\eta}{\eta_2} \right) + c_{1z} \log \eta + c_{2z}, \\
 P &= \int d\eta_1 f_p(\eta_1) + c_p.
\end{align*}
\]
The continuity condition gives one the following correlation between the coefficients:
\[
a c_{1x} + b c_{1y} + c c_{1z} = 0. \quad (48)
\]
The condition,
\[
a A_x + b A_y + c A_z = 0,
\]
is identically valid (see the expressions for \(f_x, f_y, f_z\)).
Consider a more complicated case when the density is a linear function of the viscosity: \(\rho = \beta_1 \eta + \beta_2\). Then,
\[
f_x(\eta) = a_1 \eta + a_2, \quad f_y(\eta) = b_1 \eta + b_2, \quad f_z(\eta) = d_1 \eta + d_2, \quad f_p(\eta) = p_1 \eta + p_2,
\]
where constants \(a_1, a_2, b_1, b_2, d_1, d_2, p_1, p_2\) are as follows:
\[
a_1 = \beta_1 (G_s a b + G_s a c - G_s (b^2 + c^2)),
\]
\[
a_2 = \beta_2 (G_s a b + G_s a c - G_s (b^2 + c^2)),
\]
\[
b_1 = \beta_1 (G_s a b + G_s b c - G_s (a^2 + c^2)),
\]
\[
b_2 = \beta_2 (G_s a b + G_s b c - G_s (a^2 + c^2)),
\]
\[
d_1 = \beta_1 (G_s a c + G_s b c - G_s (a^2 + b^2)),
\]
\[
d_2 = \beta_2 (G_s a c + G_s b c - G_s (a^2 + b^2)),
\]
\[
p_1 = \beta_1 (G_s a + G_s b + G_s c),
\]
\[
p_2 = \beta_2 (G_s a + G_s b + G_s c).
\]
The continuity Eq. (30) in this situation has more general form:
\[
\frac{\partial (\rho v_x)}{\partial x} + \frac{\partial (\rho v_y)}{\partial y} + \frac{\partial (\rho v_z)}{\partial z} = 0. \quad (49)
\]
In this case the formulas for the velocity and the pressure preserve their form from Eqs. (44–47) and give us
\[
v_x = -(a_1/2 + a_2 - c_{1x}) \log \eta + \frac{1}{4} a_1 \eta^2 + a_2 \eta - \frac{1}{4} a_1 - a_2 + c_{2x},
\]
\[
v_y = -(b_1/2 + b_2 - c_{1y}) \log \eta + \frac{1}{4} b_1 \eta^2 + b_2 \eta - \frac{1}{4} b_1 - b_2 + c_{2y},
\]
\[
v_z = -(d_1/2 + d_2 - c_{1z}) \log \eta + \frac{1}{4} d_1 \eta^2 + d_2 \eta - \frac{1}{4} d_1 - d_2 + c_{2z},
\]
\[
P = \frac{1}{2} p_1 \eta^2 + p_2 \eta - \frac{1}{2} p_1 - p_2 + c_{2p}.
\]
The continuity Eq. (49) leads to the relation
\[
a c_{2x} + b c_{2y} + c c_{2z} = 0.
\]

3.3 Exponentially varying viscosity – 3-D case

Consider the second benchmark solution (for exponential dependence of the viscosity on the Cartesian coordinates):
\[
\eta = C \exp(ax + by + cz). \quad (50)
\]
The assumption concerning the gravitational terms is the same as earlier. General 3-D consideration is the same. By inserting Eq. (32) into the equations for \(u_x, u_y, u_z, \bar{P}\) and taking into account that
\[
\frac{\partial \eta}{\partial x} = a \eta, \quad \frac{\partial \eta}{\partial y} = b \eta, \quad \frac{\partial \eta}{\partial z} = c \eta,
\]
on one obtains the following system of equations:
\[
(2a^2 + b^2 + c^2)(\Phi'' \eta^2 + \Phi' \eta) + ab(\Psi'' \eta^2 + \Psi' \eta)
\]
\[
+ ac(\Gamma'' \eta^2 + \Gamma' \eta) - a \bar{P}' \eta^2 = -\rho G_x,
\]
\[
ab(\Phi'' \eta^2 + \Phi' \eta) + (a^2 + 2b^2 + c^2)(\Psi'' \eta^2 + \Psi' \eta)
\]
\[
+ bc(\Gamma'' \eta^2 + \Gamma' \eta) - b \bar{P}' \eta^2 = -\rho G_y,
\]
\[
ac(\Phi'' \eta^2 + \Phi' \eta) + bc(\Psi'' \eta^2 + \Psi' \eta) + (a^2 + b^2 + 2c^2)
\]
\[
(\Gamma'' \eta^2 + \Gamma' \eta) - c \bar{P}' \eta^2 = -\rho G_z,
\]
\[
a \Phi' + b \Psi' + c \Gamma' = 0.
\]

We can note that the first three equations give us the same linear algebraic system as in the case of linear viscosity (Eqs. 36–38), if one takes \((\Phi'' \eta^2 + \Phi' \eta), (\Psi'' \eta^2 + \Psi' \eta), (\Gamma'' \eta^2 + \Gamma' \eta)\), \(\eta \bar{P}'\) as variables instead of \(\Phi'', \Psi'', \Gamma''\), \(\bar{P}\) in the linear viscosity case. Hence, the solution of the system is as follows:
\[
\Phi'' \eta^2 + \Phi' \eta = f_x(\eta),
\]
\[
\Psi'' \eta^2 + \Psi' \eta = f_y(\eta),
\]
\[
\Gamma'' \eta^2 + \Gamma' \eta = f_z(\eta),
\]
\[
\bar{P}' \eta = \frac{f_p(\eta)}{\eta}.
\]
The definition of the functions \(f_x, f_y, f_z, f_p\) was given above, see Eqs. (40–43). One can solve these equations by the procedure used in the corresponding 2-D case (exponential viscosity). By this method, we come to the result
\[
v_x = \int d \eta_2 \frac{f_x(\eta_2)}{\eta_2} \frac{\eta - \eta_2}{\eta_2} + \frac{c_{1x}}{\eta} + c_{2x}, \quad (51)
\]
\[
v_y = \int d \eta_2 \frac{f_y(\eta_2)}{\eta_2} \frac{\eta - \eta_2}{\eta_2} + \frac{c_{1y}}{\eta} + c_{2y}, \quad (52)
\]
\[
v_z = \int d \eta_2 \frac{f_z(\eta_2)}{\eta_2} \frac{\eta - \eta_2}{\eta_2} + \frac{c_{1z}}{\eta} + c_{2z}, \quad (53)
\]
\[
P = \int d \eta_1 \frac{f_p(\eta_1)}{\eta_1} + c_p. \quad (54)
\]
Here $c_{1x}, c_{1y}, c_{1z}, c_{2x}, c_{2y}, c_{2z}, c_p$ are constants. The continuity equation gives one a relation between the coefficients:

$$ac_{1x} + bc_{1y} + cc_{1z} = 0.$$

One can compare Eqs. (51–54) with the results for the corresponding 2-D case (Eqs. 26–28).

For a particularly simple case (constant gravitational term) when $f_x(\eta) = A_x = \text{const}, \; f_y(\eta) = A_y = \text{const}, \; f_z(\eta) = A_z = \text{const}, \; f_P(\eta) = A_P = \text{const}$ one has:

$$v_x = -\frac{(A_x + c_{1x})}{\eta} - A_x \log \eta + \tilde{c}_{2x},$$

$$v_y = -\frac{(A_y + c_{1y})}{\eta} - A_y \log \eta + \tilde{c}_{2y},$$

$$v_z = -\frac{(A_z + c_{1z})}{\eta} - A_z \log \eta + \tilde{c}_{2z},$$

$$P = A_P \log \eta + c_p.$$

Consider a more complicated case when the density is a linear function of the viscosity: $\rho = \rho_1 \eta + \rho_2$. Then,

$$f_x(\eta) = a_1 \eta + a_2, \; f_y(\eta) = b_1 \eta + b_2, \; f_z(\eta) = d_1 \eta + d_2, \; f_P(\eta) = p_1 \eta + p_2,$$

where constants $a_1, a_2, b_1, b_2, d_1, d_2, p_1, p_2$ have been determined in the previous section. Here we use the continuity equation in the form of Eq. (49). In this case Eqs. (51–54) give us

$$v_x = a_1 \log \eta + \frac{(a_1 - a_2 - c_{1x})}{\eta} - a_2 \log \eta + \tilde{c}_{2x},$$

$$v_y = b_1 \log \eta + \frac{(b_1 - b_2 - c_{1y})}{\eta} - b_2 \log \eta + \tilde{c}_{2y},$$

$$v_z = d_1 \log \eta + \frac{(d_1 - d_2 - c_{1z})}{\eta} - d_2 \log \eta + \tilde{c}_{2y},$$

$$P = p_1 \eta + p_2 \log \eta + \tilde{c}_p,$$

where $\tilde{c}_{2x} = c_{2x} + c_{1x} + a_2 - a_1, \; \tilde{c}_{2y} = c_{2y} + c_{1y} + b_2 - b_1, \; \tilde{c}_{2z} = c_{2z} + c_{1z} + d_2 - d_1, \; \tilde{c}_p = c_p - p_1$. The continuity Eq. (49) leads to the relation

$$a\tilde{c}_{2x} + b\tilde{c}_{2y} + c\tilde{c}_{2z} = 0.$$

4 Example problems and numerical convergence tests

The scheme of algorithm testing is as follows. Initially, we have obtained particular solutions of the Stokes and continuity equations for two types of viscosity variations. Let us choose a domain, e.g., a rectangle in the 2-D case. We calculate the values for velocity and pressure given by our analytical solution and take these values as the boundary conditions.

Then, due to the uniqueness theorem, the solution of the boundary problem in the domain should coincide with our analytical solution. Let us compute the solution of the boundary problem by a numerical method which is tested. Comparison of the result with the exact analytical solution gives us the error of the numerical solution and shows the quality of the numerical algorithm. In the present paper, we used standard 2-D and 3-D stress-conservative finite-differences on staggered regularly spaced grid for obtaining numerical solutions (Gerya, 2010). Respective MatLab programs for the 2-D and 3-D cases are provided in the Supplement to this paper. All results of calculations are presented in the Supplement. In the main text of the paper we show only a few examples.
4.1 2-D example

4.1.1 Linearly varying viscosity

Consider a simple example of such flow in a rectangle \(\Omega\):

\[
0 \leq x \leq x_{\text{size}}, \quad 0 \leq y \leq y_{\text{size}}.
\]

We assume that \(\eta = ax + by + c\).

We will mark the exact solution obtained in Sect. 2 as \(v_{x,a}, v_{y,a}, P_{a}\). It is the solution of the boundary problem in the rectangle \(\Omega\) with the following conditions at the boundary \(\partial \Omega = \{x = 0, x = x_{\text{size}}, y = 0, y = y_{\text{size}}\}\):

\[
v_{x}|_{\partial \Omega} = v_{y,a}, \quad v_{y}|_{\partial \Omega} = v_{x,a}.
\]

Let us compute the velocity and the pressure by the finite-difference scheme. The corresponding solution is marked as \(v_{x,n}, v_{y,n}, P_{n}\). The deviation of these values from the exact solution \((v_{x,n} - v_{x,a}, v_{y,n} - v_{y,a}, P_{n} - P_{a})\) is related to the error of the numerical scheme. We calculate the relative error norms of three types: \(L_{\infty}\), \(L_1\), \(L_2\) for different viscosity contrasts, i.e., different values of the coefficients \(a, b\). We test the program Stokes 2-D variable-viscosity 1 from Gerya (2010). Calculations show that the convergence is better for the case of low-viscosity contrast (cf., Supplement). The results for high-viscosity contrast are presented in Figs. 1–3: Fig. 1 shows prescribed viscosity and density distribution, Fig. 2 presents the pressure and the velocity components distributions and Fig. 3 contains the plot of the relative errors via the grid resolutions in logarithmic scale. The viscosity contrast, i.e., the values of the coefficients in the expression for the viscosity, is determined by the given values of the viscosity at three corners of the model rectangle... The value of the viscosity at the initial rectangle corner is 1, whereas \(\eta_2\) and \(\eta_3\) are the prescribed values of the viscosity at the upper-left and lower-right corner, respectively. In all figures “n” means “numerical solution”, “a” means “analytical solution” (benchmark).

For the case of linearly varying viscosity we made calculations for the following system parameters:

\[
x_{\text{size}} = y_{\text{size}} = 1, \quad G_x = 0, \quad G_y = 10,
\]

\[
\eta_1 = 1, \quad \beta_1 = 1, \quad \beta_2 = 3 \times 10^3,
\]

\[
c = \eta_1, \quad a = (\eta_3 - \eta_1)/x_{\text{size}}, \quad b = (\eta_2 - \eta_1)/y_{\text{size}},
\]

\[
\rho = \beta_1(ax + by + c) + \beta_2.
\]

One can see that the numerical approach has rather high accuracy. We observe the conventional situation – \(L_{\infty}\)-error is the largest among the considered errors norms, and \(L_1\)-error and \(L_2\)-error are similar.
To describe in more details the dependence of the error on the viscosity contrast, we fill tables with errors for different values of \(\eta_2, \eta_3 \) (see Appendix, Tables A1–A3).

4.1.2 Exponentially varying viscosity

The case of exponentially varying viscosity is treated analogously. In order to make a comparison with the case of linearly varying viscosity, we take the same system parameters (geometrical size, gravitational terms and the dependence of the density on the viscosity) with the same viscosity contrast (i.e., the values of the viscosity at the rectangle corners):

\[
C = \eta_1, \quad a = (\log(\eta_3) - \log(\eta_1))/x_{\text{size}}, \\
b = (\log(\eta_2) - \log(\eta_1))/y_{\text{size}}, \\
\eta = C \exp(ax + by), \\
\rho = \beta_1 \eta + \beta_2, \\
x_{\text{size}} = y_{\text{size}} = 1, \\
G_x = 10, \quad G_y = 10, \\
\eta_1 = 1, \quad \beta_1 = 1, \quad \beta_2 = 3 \times 10^3.
\]

We examine two cases (low- and high-viscosity contrasts, cf. Supplement). Figures 4–6 present the results for high-viscosity contrast. There are some similarities with the previous case. In particular, \(L_\infty \) error norm gives us the maximum relative error value among the three considered error norms. However, peculiarities are more interesting. Namely, the numerical scheme works essentially better for the case of exponentially varying viscosity than for linearly varying viscosity. We observe good convergence for both low- and high-viscosity contrasts (compare Figs. 3 and 6, also cf. Supplement).

Dependence of the errors on the viscosity contrast for exponentially varying viscosity is presented in the Appendix Tables A3–A6.
4.2 3-D example

One can note that benchmark solutions for the 3-D case are essentially more rare than for the corresponding 2-D situation. It is, therefore, noteworthy that the suggested approach allows us to obtain such solutions for 3-D Stokes and continuity equations. As earlier, we consider the cases of linearly and exponentially varying viscosity.

4.2.1 Linearly varying viscosity

The statement of the problem is analogous to the previous case. In the 3-D space we consider a parallelepiped \(\Omega: 0 \leq x \leq x_{\text{size}}, 0 \leq y \leq y_{\text{size}}, 0 \leq z \leq z_{\text{size}} \). We assume that \(\eta = ax + by + cz + e \). We will mark the exact solution obtained in Sect. 3 as \(v_{x,a}, v_{y,a}, v_{z,a}, P_{a} \). Due to the uniqueness theorem, it is the solution of the boundary problem in the parallelepiped \(\Omega \) with the following conditions at the boundary \(\partial \Omega = \{ x = 0, x = x_{\text{size}}, y = 0, y = y_{\text{size}}, z = 0, z = z_{\text{size}} \} : \)

\[
v_{x}|_{\partial \Omega} = v_{x,a}, v_{y}|_{\partial \Omega} = v_{y,a}, v_{z}|_{\partial \Omega} = v_{z,a}.
\]

Let us compute the velocity and the pressure numerically using chosen finite-difference algorithm. The corresponding numerical solution is marked as \(v_{x,n}, v_{y,n}, v_{z,n}, P_{n} \). The deviation of these values from the exact solution \((v_{x,n} - v_{x,a}, v_{y,n} - v_{y,a}, v_{z,n} - v_{z,a}, P_{n} - P_{a}) \) is related to the error of the numerical scheme. As in the 2-D case, we consider three error norms: \(L_{\infty}, L_{1}, L_{2} \). We examine cases of low- and high-viscosity contrasts. Coefficients \(a, b, c, e \) in the viscosity formula are determined by given viscosity values \((\eta_{1} = 1, \eta_{2}, \eta_{3}, \eta_{4}) \) at four adjacent parallelepiped vertices.

We choose the following system parameters:

\[
e = \eta_{1}, \quad a = (\eta_{3} - \eta_{1})/x_{\text{size}}, \quad b = (\eta_{2} - \eta_{1})/y_{\text{size}}, \quad c = (\eta_{4} - \eta_{1})/z_{\text{size}}, \quad \eta = ax + by + cz + e, \quad \rho = \beta_{1}\eta + \beta_{2}, \quad x_{\text{size}} = y_{\text{size}} = z_{\text{size}} = 1, \quad G_{x} = 10, \quad G_{y} = 10, \quad G_{z} = 0, \quad \eta_{1} = 1, \quad \beta_{1} = 1, \quad \beta_{2} = 3 \times 10^{3}.
\]

Results are presented in the Supplement. It should be mentioned that the numerical procedure for the 3-D case takes essentially greater time than for the 2-D case. Qualitatively, the results are similar to that for the corresponding 2-D case. Better numerical convergence is again found for low-viscosity contrast.

4.2.2 Exponentially varying viscosity

As in the 2-D case, we consider also exponentially varying viscosity. The consideration is analogous to that in the respective 2-D case. In order to make a comparison we take here the same system parameters. Naturally, the viscosity and, correspondingly, the density distributions are now exponential.
The system parameters are chosen as follows:

\[C = \eta_1, \quad a = (\log(\eta_3) - \log(\eta_1))/x_{\text{size}}, \]
\[b = (\log(\eta_2) - \log(\eta_1))/y_{\text{size}}, \]
\[c = (\log(\eta_4) - \log(\eta_1))/z_{\text{size}}. \]
\[\eta = C \exp(ax + by + cz), \]
\[\rho = \beta_1 \eta + \beta_2, \]
\[x_{\text{size}} = y_{\text{size}} = z_{\text{size}} = 1, \]
\[G_x = 10, \quad G_y = 10, \quad G_z = 0, \]
\[\eta_1 = 1, \quad \beta_1 = 1, \quad \beta_2 = 3 \times 10^3. \]

The results are presented in Figs. 7–10 for the case of high-viscosity contrast. Similarly to 2-D results, the numerical procedure converges better for the exponentially varying viscosity than for the linearly varying viscosity. The algorithm convergence, i.e., the dependence of the errors on the grid resolution is shown in Fig. 10.

5 Conclusions

In this paper, we developed new, specific analytical solutions for the 2-D and 3-D Stokes flows with both linearly and exponentially variable viscosity. We also demonstrated how these solutions can be converted into 2-D and 3-D test problems suitable for benchmarking numerical geodynamic codes. The main advantage of this new generalized approach is that large variety of benchmark problems can be easily generated, including relatively complex cases with open model boundaries, non-vertical gravity and variable gradients of viscosity and density fields, which are not parallel to Cartesian axes. These solutions can be very useful for testing numerical algorithms aimed at modeling variable-viscosity mantle convection and lithospheric dynamics. Examples of respective 2-D and 3-D MatLab codes are provided with the paper.
Appendix A: Error decreasing with decreasing grid resolution

The dependence of the convergence on the viscosity contrast is shown in the following tables. Namely, the viscosities η_2, η_3 run through a set of values from 2 to 10000. For each pair of η_2, η_3 we perform the benchmarking procedure described above and obtain the curve describing the dependence of the logarithm of the error norm on the logarithm of the grid resolution. The tangent of the slope angle of this curve gives us an input of the table. Full set of tables are given in the Supplement. Below, we show several examples of such tables.

Table A1. Tangent of the slope of the curve showing the dependence of the logarithm of L_2-error for pressure P on the logarithm of the grid step for different viscosity contrasts. Linearly varying viscosity.

<table>
<thead>
<tr>
<th>η_2</th>
<th>η_3</th>
<th>2</th>
<th>5</th>
<th>20</th>
<th>100</th>
<th>300</th>
<th>1000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.42</td>
<td>1.14</td>
<td>1.24</td>
<td>0.86</td>
<td>0.46</td>
<td>0.08</td>
<td>−0.20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.13</td>
<td>1.44</td>
<td>1.03</td>
<td>1.30</td>
<td>0.57</td>
<td>0.23</td>
<td>−0.16</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.23</td>
<td>1.03</td>
<td>1.39</td>
<td>1.27</td>
<td>0.83</td>
<td>0.43</td>
<td>−0.01</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.14</td>
<td>1.21</td>
<td>1.26</td>
<td>1.36</td>
<td>1.33</td>
<td>0.50</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>1.27</td>
<td>1.27</td>
<td>1.29</td>
<td>1.33</td>
<td>1.17</td>
<td>0.40</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.56</td>
<td>0.70</td>
<td>1.03</td>
<td>1.24</td>
<td>1.31</td>
<td>1.36</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>−0.21</td>
<td>−0.19</td>
<td>−0.04</td>
<td>0.23</td>
<td>0.34</td>
<td>0.43</td>
<td>1.27</td>
<td></td>
</tr>
</tbody>
</table>

Table A2. Tangent of the slope of the curve showing the dependence of the logarithm of L_2-error for velocity component v_x on the logarithm of the grid step for different viscosity contrasts. Linearly varying viscosity.

<table>
<thead>
<tr>
<th>η_2</th>
<th>η_3</th>
<th>2</th>
<th>5</th>
<th>20</th>
<th>100</th>
<th>300</th>
<th>1000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.81</td>
<td>1.99</td>
<td>1.81</td>
<td>1.20</td>
<td>0.70</td>
<td>0.29</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.53</td>
<td>1.61</td>
<td>1.80</td>
<td>1.79</td>
<td>0.91</td>
<td>0.47</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.47</td>
<td>1.54</td>
<td>1.61</td>
<td>1.81</td>
<td>1.09</td>
<td>0.77</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.13</td>
<td>1.39</td>
<td>1.54</td>
<td>1.69</td>
<td>2.04</td>
<td>0.94</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>1.64</td>
<td>1.61</td>
<td>1.63</td>
<td>1.61</td>
<td>1.70</td>
<td>1.49</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.56</td>
<td>0.77</td>
<td>1.23</td>
<td>1.57</td>
<td>1.60</td>
<td>1.15</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>−0.19</td>
<td>−0.13</td>
<td>0.01</td>
<td>0.41</td>
<td>0.69</td>
<td>0.96</td>
<td>0.88</td>
<td></td>
</tr>
</tbody>
</table>

A1 Linearly varying viscosity

Tables A1–A3 contain log rates of L_2 error norm decreasing with decreasing grid resolution (the curve slope in Fig. 3 in the logarithmic scale) for different viscosity contrasts in the case of linearly varying viscosity. Calculations were made for the following system parameters:

\[x_{\text{size}} = y_{\text{size}} = 1, \quad G_x = 0, \quad G_y = 10, \]
\[\eta_1 = 1, \quad \beta_1 = 10^2, \quad \beta_2 = 3 \times 10^3, \]
\[c = \eta_1, \quad a = (\eta_3 - \eta_1)/x_{\text{size}}, \quad b = (\eta_2 - \eta_1)/y_{\text{size}}, \]
\[\rho = \beta_1 (ax + by + c) + \beta_2. \]
A2 Exponentially varying viscosity

Tables A4–6 contain log rates of L_2 error norm decreasing with decreasing grid step (the curve slope in Fig. 6 in the logarithmic scale) for different viscosity contrasts in the case of exponentially varying viscosity. The system parameters are the same as in the case of linearly varying viscosity with respective changes:

\[c = \eta_1, \quad a = (\log \eta_3 - \log \eta_1)/x_{\text{size}}, \]
\[b = (\log \eta_2 - \log \eta_1)/y_{\text{size}}, \]
\[\rho = \beta_1 c \exp(a x + b y) + \beta_2. \]

Table A4. Tangent of the slope of the curve showing the dependence of the logarithm of L_2-error for pressure P on the logarithm of the grid step for different viscosity contrasts. Exponentially varying viscosity.

<table>
<thead>
<tr>
<th>η_3</th>
<th>2</th>
<th>5</th>
<th>20</th>
<th>100</th>
<th>1000</th>
<th>10 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.46</td>
<td>1.03</td>
<td>1.20</td>
<td>1.47</td>
<td>1.56</td>
<td>1.40</td>
</tr>
<tr>
<td>5</td>
<td>1.03</td>
<td>1.13</td>
<td>1.23</td>
<td>1.39</td>
<td>1.53</td>
<td>1.39</td>
</tr>
<tr>
<td>20</td>
<td>1.13</td>
<td>1.24</td>
<td>1.31</td>
<td>1.46</td>
<td>1.51</td>
<td>1.46</td>
</tr>
<tr>
<td>100</td>
<td>1.27</td>
<td>1.39</td>
<td>1.39</td>
<td>1.46</td>
<td>1.43</td>
<td>1.37</td>
</tr>
<tr>
<td>300</td>
<td>1.37</td>
<td>1.41</td>
<td>1.39</td>
<td>1.40</td>
<td>1.37</td>
<td>1.31</td>
</tr>
<tr>
<td>1000</td>
<td>1.41</td>
<td>1.41</td>
<td>1.36</td>
<td>1.33</td>
<td>1.30</td>
<td>1.24</td>
</tr>
<tr>
<td>10 000</td>
<td>1.37</td>
<td>1.34</td>
<td>1.26</td>
<td>1.17</td>
<td>1.14</td>
<td>1.11</td>
</tr>
</tbody>
</table>

Table A5. Tangent of the slope of the curve showing the dependence of the logarithm of L_2-error for velocity component u_x on the logarithm of the grid step for different viscosity contrasts. Exponentially varying viscosity.

<table>
<thead>
<tr>
<th>η_3</th>
<th>2</th>
<th>5</th>
<th>20</th>
<th>100</th>
<th>300</th>
<th>1000</th>
<th>10 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.92</td>
<td>2.00</td>
<td>1.97</td>
<td>2.03</td>
<td>2.00</td>
<td>1.96</td>
<td>1.91</td>
</tr>
<tr>
<td>5</td>
<td>1.66</td>
<td>1.92</td>
<td>1.93</td>
<td>2.09</td>
<td>2.01</td>
<td>1.97</td>
<td>1.90</td>
</tr>
<tr>
<td>20</td>
<td>1.63</td>
<td>1.84</td>
<td>2.06</td>
<td>2.09</td>
<td>2.01</td>
<td>1.96</td>
<td>1.87</td>
</tr>
<tr>
<td>100</td>
<td>1.71</td>
<td>1.93</td>
<td>2.06</td>
<td>2.04</td>
<td>1.97</td>
<td>1.90</td>
<td>1.83</td>
</tr>
<tr>
<td>300</td>
<td>1.87</td>
<td>1.99</td>
<td>2.03</td>
<td>2.00</td>
<td>1.93</td>
<td>1.84</td>
<td>1.74</td>
</tr>
<tr>
<td>1000</td>
<td>1.93</td>
<td>2.00</td>
<td>2.03</td>
<td>2.00</td>
<td>1.93</td>
<td>1.84</td>
<td>1.74</td>
</tr>
<tr>
<td>10 000</td>
<td>1.76</td>
<td>1.89</td>
<td>1.96</td>
<td>1.94</td>
<td>1.90</td>
<td>1.83</td>
<td>1.67</td>
</tr>
</tbody>
</table>

Table A6. Tangent of the slope of the curve showing the dependence of the logarithm of L_2-error for velocity component v_y on the logarithm of the grid step for different viscosity contrasts. Exponentially varying viscosity.

<table>
<thead>
<tr>
<th>η_3</th>
<th>2</th>
<th>5</th>
<th>20</th>
<th>100</th>
<th>300</th>
<th>1000</th>
<th>10 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.97</td>
<td>1.66</td>
<td>1.81</td>
<td>2.10</td>
<td>2.01</td>
<td>1.94</td>
<td>1.83</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>1.93</td>
<td>1.99</td>
<td>2.11</td>
<td>2.10</td>
<td>2.04</td>
<td>1.94</td>
</tr>
<tr>
<td>20</td>
<td>1.97</td>
<td>1.90</td>
<td>2.09</td>
<td>2.14</td>
<td>2.11</td>
<td>2.07</td>
<td>2.00</td>
</tr>
<tr>
<td>100</td>
<td>1.89</td>
<td>1.96</td>
<td>2.11</td>
<td>2.09</td>
<td>2.06</td>
<td>2.04</td>
<td>1.97</td>
</tr>
<tr>
<td>300</td>
<td>2.03</td>
<td>2.11</td>
<td>2.09</td>
<td>2.01</td>
<td>1.97</td>
<td>1.96</td>
<td>1.93</td>
</tr>
<tr>
<td>1000</td>
<td>2.11</td>
<td>2.06</td>
<td>2.04</td>
<td>1.96</td>
<td>1.91</td>
<td>1.87</td>
<td>1.86</td>
</tr>
<tr>
<td>10 000</td>
<td>1.96</td>
<td>1.94</td>
<td>1.93</td>
<td>1.87</td>
<td>1.83</td>
<td>1.77</td>
<td>1.71</td>
</tr>
</tbody>
</table>
References

Kaus, B. J. P.: Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation, Tectonophysics, 484, 36–47, 2010.
Thieulot, C., Fullsack, P. and Braun, J. Adaptive octree-based finite element analysis of two- and three-dimensional

