Articles | Volume 5, issue 1
https://doi.org/10.5194/se-5-511-2014
https://doi.org/10.5194/se-5-511-2014
Research article
 | 
19 Jun 2014
Research article |  | 19 Jun 2014

Optimal locations of sea-level indicators in glacial isostatic adjustment investigations

H. Steffen, P. Wu, and H. Wang

Related authors

The sea cliff at Dwasieden: soft-sediment deformation structures triggered by glacial isostatic adjustment in front of the advancing Scandinavian Ice Sheet
Małgorzata Pisarska-Jamroży, Szymon Belzyt, Andreas Börner, Gösta Hoffmann, Heiko Hüneke, Michael Kenzler, Karsten Obst, Henrik Rother, Holger Steffen, Rebekka Steffen, and Tom van Loon
DEUQUA Spec. Pub., 2, 61–67, https://doi.org/10.5194/deuquasp-2-61-2019,https://doi.org/10.5194/deuquasp-2-61-2019, 2019
CONVERSE TRENDS OF THE TERRESTRIAL AND GROUND WATER STORAGE CHANGES IN CANADA AND THE UNITED STATES
H. Wang, L. Xiang, H. Steffen, P. Wu, L. Jiang, Q. Shen, D. Piretzidis, M. G. Sideris, M. Hayashi, and L. Jia
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1793–1796, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1793-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-1793-2019, 2019
Comparison of the glacial isostatic adjustment behaviour in glacially induced fault models
Rebekka Steffen, Holger Steffen, and Patrick Wu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-43,https://doi.org/10.5194/gmd-2016-43, 2016
Revised manuscript not accepted
Short summary
The sensitivity of GNSS measurements in Fennoscandia to distinct three-dimensional upper-mantle structures
H. Steffen and P. Wu
Solid Earth, 5, 557–567, https://doi.org/10.5194/se-5-557-2014,https://doi.org/10.5194/se-5-557-2014, 2014
Lithosphere and upper-mantle structure of the southern Baltic Sea estimated from modelling relative sea-level data with glacial isostatic adjustment
H. Steffen, G. Kaufmann, and R. Lampe
Solid Earth, 5, 447–459, https://doi.org/10.5194/se-5-447-2014,https://doi.org/10.5194/se-5-447-2014, 2014

Related subject area

Geodynamics
Modeling liquid transport in the Earth's mantle as two-phase flow: effect of an enforced positive porosity on liquid flow and mass conservation
Changyeol Lee, Nestor G. Cerpa, Dongwoo Han, and Ikuko Wada
Solid Earth, 15, 23–38, https://doi.org/10.5194/se-15-23-2024,https://doi.org/10.5194/se-15-23-2024, 2024
Short summary
Thrusts control the thermal maturity of accreted sediments
Utsav Mannu, David Fernández-Blanco, Ayumu Miyakawa, Taras Gerya, and Masataka Kinoshita
Solid Earth, 15, 1–21, https://doi.org/10.5194/se-15-1-2024,https://doi.org/10.5194/se-15-1-2024, 2024
Short summary
The crustal structure of the Longmenshan fault zone and its implications for seismogenesis: new insight from aeromagnetic and gravity data
Hai Yang, Shengqing Xiong, Qiankun Liu, Fang Li, Zhiye Jia, Xue Yang, Haofei Yan, and Zhaoliang Li
Solid Earth, 14, 1289–1308, https://doi.org/10.5194/se-14-1289-2023,https://doi.org/10.5194/se-14-1289-2023, 2023
Short summary
Earth's core variability from magnetic and gravity field observations
Anita Thea Saraswati, Olivier de Viron, and Mioara Mandea
Solid Earth, 14, 1267–1287, https://doi.org/10.5194/se-14-1267-2023,https://doi.org/10.5194/se-14-1267-2023, 2023
Short summary
The role of continental lithospheric thermal structure in the evolution of orogenic systems: application to the Himalayan–Tibetan collision zone
Mengxue Liu, Dinghui Yang, and Rui Qi
Solid Earth, 14, 1155–1168, https://doi.org/10.5194/se-14-1155-2023,https://doi.org/10.5194/se-14-1155-2023, 2023
Short summary

Cited articles

Argus, D. F. and Peltier, W. R.: Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives. Geophys. J. Int., 181, 697–723, https://doi.org/10.1111/j.1365-246X.2010.04562.x, 2010.
Austermann, J., Mitrovica, J. X., Latychev, K., and Milne, G. A.: Barbados-based estimate of ice volume at Last Glacial Maximum affected by subducted plate, Nat. Geosci., 6, 553–557, https://doi.org/10.1038/ngeo1859, 2013.
Clark, J. A.: The reconstruction of the Laurentide Ice Sheet of North America from sea level data: Method and preliminary results, J. Geophys. Res., 85, 4307–4323, https://doi.org/10.1029/JB085iB08p04307, 1980.
Engelhart, S. E., Peltier, W. R., and Horton, B. P.: Holocene relative sea-level changes and glacial isostatic adjustment of the U.S. Atlantic coast, Geology, 39, 751–754, https://doi.org/10.1130/G31857.1, 2011.
Fairbanks, R. G., Mortlock, R. A., Chiu, T. C., Cao, L., Kaplan, A., Guilderson, T. P., Fairbanks, T. W., Bloom, A. L., Grootes, P. M., and Nadeau, M. J.: Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat. Sci. Rev., 24, 1781–1796, https://doi.org/10.1016/j.quascirev.2005.04.007, 2005.