Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.495 IF 3.495
  • IF 5-year<br/> value: 3.386 IF 5-year
  • CiteScore<br/> value: 3.70 CiteScore
  • SNIP value: 0.783 SNIP 0.783
  • SJR value: 1.039 SJR 1.039
  • IPP value: 1.987 IPP 1.987
  • h5-index value: 20 h5-index 20
Solid Earth, 6, 681-699, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
11 Jun 2015
Brittle–viscous deformation of vein quartz under fluid-rich lower greenschist facies conditions
H. J. Kjøll1, G. Viola1,2, L. Menegon3, and B. E. Sørensen1 1Dept. of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology, Trondheim, Norway
2Geological Survey of Norway, Trondheim, Norway
3School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, UK
Abstract. We studied by Electron BackScatter Diffraction (EBSD) and optical microscopy a coarse-grained (ca. 0.5–6 mm) quartz vein embedded in a phyllonitic matrix to gain insights into the recrystallization mechanisms and the processes of strain localization in quartz deformed under lower greenschist facies conditions, broadly coincident with the brittle–viscous transition. The vein deformed during faulting along a phyllonitic thrust of Caledonian age within the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The phyllonite hosting the vein formed at the expense of a metabasaltic protolith through feldspar breakdown to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the quartz vein acted as a relatively rigid body. Viscous deformation in the vein was initially accommodated by quartz basal <a> slip. Under the prevailing deformation conditions, however, dislocation glide- and possibly creep-accommodated deformation of quartz was inefficient, and this resulted in localized strain hardening. In response to the (1) hardening, (2) progressive and cyclic increase of the fluid pressure, and (3) increasing competence contrast between the vein and the weakly foliated host phyllonite, vein quartz crystals began to deform by brittle processes along specific, suitably oriented lattice planes, creating microgouges along microfractures. Nucleated new grains rapidly sealed these fractures as fluids penetrated the actively deforming system. The grains grew initially by solution precipitation and later by grain boundary migration. We suggest that the different initial orientation of the vein crystals led to strain accommodation by different mechanisms in the individual crystals, generating remarkably different microstructures. Crystals suitably oriented for basal slip, for example, accommodated strain mainly viscously and experienced only minor fracturing. Instead, crystals misoriented for basal slip hardened and deformed predominantly by domainal fracturing. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms may vary through time in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.

Citation: Kjøll, H. J., Viola, G., Menegon, L., and Sørensen, B. E.: Brittle–viscous deformation of vein quartz under fluid-rich lower greenschist facies conditions, Solid Earth, 6, 681-699,, 2015.
Publications Copernicus