Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.165 IF 4.165
  • IF 5-year value: 4.075 IF 5-year
    4.075
  • CiteScore value: 4.28 CiteScore
    4.28
  • SNIP value: 1.501 SNIP 1.501
  • SJR value: 1.060 SJR 1.060
  • IPP value: 4.21 IPP 4.21
  • h5-index value: 29 h5-index 29
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 27 Scimago H
    index 27
Volume 7, issue 4
Solid Earth, 7, 1125-1139, 2016
https://doi.org/10.5194/se-7-1125-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Pore-scale tomography & imaging - applications, techniques...

Solid Earth, 7, 1125-1139, 2016
https://doi.org/10.5194/se-7-1125-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Jul 2016

Research article | 19 Jul 2016

Phase segmentation of X-ray computer tomography rock images using machine learning techniques: an accuracy and performance study

Swarup Chauhan et al.
Related authors  
CobWeb 1.0: Machine Learning Tool Box for Tomographic Imaging
Swarup Chauhan, Kathleen Sell, Freider Enzmann, Wolfram Rühaak, Thorsten Wille, Ingo Sass, and Michael Kersten
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-335,https://doi.org/10.5194/gmd-2018-335, 2019
Manuscript under review for GMD
Short summary
Outcrop analogue study to determine reservoir properties of the Los Humeros and Acoculco geothermal fields, Mexico
Leandra M. Weydt, Kristian Bär, Chiara Colombero, Cesare Comina, Paromita Deb, Baptiste Lepillier, Giuseppe Mandrone, Harald Milsch, Christopher A. Rochelle, Federico Vagnon, and Ingo Sass
Adv. Geosci., 45, 281-287, https://doi.org/10.5194/adgeo-45-281-2018,https://doi.org/10.5194/adgeo-45-281-2018, 2018
Short summary
Preliminary studies for an integrated assessment of the hydrothermal potential of the Pechelbronn Group in the northern Upper Rhine Graben
Meike Hintze, Barbara Plasse, Kristian Bär, and Ingo Sass
Adv. Geosci., 45, 251-258, https://doi.org/10.5194/adgeo-45-251-2018,https://doi.org/10.5194/adgeo-45-251-2018, 2018
Short summary
From oil field to geothermal reservoir: assessment for geothermal utilization of two regionally extensive Devonian carbonate aquifers in Alberta, Canada
Leandra M. Weydt, Claus-Dieter J. Heldmann, Hans G. Machel, and Ingo Sass
Solid Earth, 9, 953-983, https://doi.org/10.5194/se-9-953-2018,https://doi.org/10.5194/se-9-953-2018, 2018
Short summary
Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool
S. Homuth, A. E. Götz, and I. Sass
Geoth. Energ. Sci., 3, 41-49, https://doi.org/10.5194/gtes-3-41-2015,https://doi.org/10.5194/gtes-3-41-2015, 2015
Related subject area  
Geophysics
Ionian Abyssal Plain: a window into the Tethys oceanic lithosphere
Anke Dannowski, Heidrun Kopp, Frauke Klingelhoefer, Dirk Klaeschen, Marc-André Gutscher, Anne Krabbenhoeft, David Dellong, Marzia Rovere, David Graindorge, Cord Papenberg, and Ingo Klaucke
Solid Earth, 10, 447-462, https://doi.org/10.5194/se-10-447-2019,https://doi.org/10.5194/se-10-447-2019, 2019
Short summary
Calibrating a new attenuation curve for the Dead Sea region using surface wave dispersion surveys in sites damaged by the 1927 Jericho earthquake
Yaniv Darvasi and Amotz Agnon
Solid Earth, 10, 379-390, https://doi.org/10.5194/se-10-379-2019,https://doi.org/10.5194/se-10-379-2019, 2019
Crustal-scale depth imaging via joint FWI of OBS data and PSDM of MCS data: a case study from the eastern Nankai Trough
Andrzej Górszczyk, Stephane Operto, Laure Schenini, and Yasuhiro Yamada
Solid Earth Discuss., https://doi.org/10.5194/se-2019-33,https://doi.org/10.5194/se-2019-33, 2019
Revised manuscript accepted for SE
Short summary
Constraining the geotherm beneath the British Isles from Bayesian inversion of Curie depth: Integrated modelling of magnetic, geothermal and seismic data
Ben Mather and Javier Fullea
Solid Earth Discuss., https://doi.org/10.5194/se-2019-9,https://doi.org/10.5194/se-2019-9, 2019
Revised manuscript accepted for SE
Imaging East European Craton margin in Northern Poland using extended-correlation processing applied to regional reflection seismic profiles
Miłosz Mężyk, Michał Malinowski, and Stanisław Mazur
Solid Earth Discuss., https://doi.org/10.5194/se-2019-26,https://doi.org/10.5194/se-2019-26, 2019
Revised manuscript accepted for SE
Cited articles  
Amigó, E., Gonzalo, J., Artiles, J., and Verdejo, F.: A comparison of extrinsic clustering evaluation metrics based on formal constraints, Inform. Retrieval, 12, 461–486, 2009.
Aretz, A., Bär, K., Götz, A. E., and Sass, I.: Outcrop analogue study of Permocarboniferous geo-thermal sandstone reservoir formations (northern Upper Rhine Graben, Germany): impact of mineral content, depositional environment and diagenesis on petrophysical properties, Int. J. Earth Sci., 105, 1431–1452, https://doi.org/10.1007/s00531-015-1263-2 2016.
Bradley, A. P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recogn., 30, 1145–1159. 1997.
Breiman, L.: Bagging predictors, Mach. Lear., 24, 123–140, 1996.
Publications Copernicus
Download
Short summary
Machine learning techniques are a promising alternative for processing (phase segmentation) of 3-D X-ray computer tomographic rock images. Here the performance and accuracy of different machine learning techniques are tested. The aim is to classify pore space, rock grains and matrix of four distinct rock samples. The porosity obtained based on the segmented XCT images is cross-validated with laboratory measurements. Accuracies of the different methods are discussed and recommendations proposed.
Machine learning techniques are a promising alternative for processing (phase segmentation) of...
Citation