Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.165 IF 4.165
  • IF 5-year value: 4.075 IF 5-year
    4.075
  • CiteScore value: 4.28 CiteScore
    4.28
  • SNIP value: 1.501 SNIP 1.501
  • SJR value: 1.060 SJR 1.060
  • IPP value: 4.21 IPP 4.21
  • h5-index value: 29 h5-index 29
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 27 Scimago H
    index 27
Volume 7, issue 5
Solid Earth, 7, 1395-1403, 2016
https://doi.org/10.5194/se-7-1395-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Solid Earth, 7, 1395-1403, 2016
https://doi.org/10.5194/se-7-1395-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Sep 2016

Research article | 27 Sep 2016

Land use and land cover change based on historical space–time model

Qiong Sun, Chi Zhang, Min Liu, and Yongjing Zhang Qiong Sun et al.
  • Tourism Institute of Beijing Union University, Beijing, 100101, China

Abstract. Land use and cover change is a leading edge topic in the current research field of global environmental changes and case study of typical areas is an important approach understanding global environmental changes. Taking the Qiantang River (Zhejiang, China) as an example, this study explores automatic classification of land use using remote sensing technology and analyzes historical space–time change by remote sensing monitoring. This study combines spectral angle mapping (SAM) with multi-source information and creates a convenient and efficient high-precision land use computer automatic classification method which meets the application requirements and is suitable for complex landform of the studied area. This work analyzes the histological space–time characteristics of land use and cover change in the Qiantang River basin in 2001, 2007 and 2014, in order to (i) verify the feasibility of studying land use change with remote sensing technology, (ii) accurately understand the change of land use and cover as well as historical space–time evolution trend, (iii) provide a realistic basis for the sustainable development of the Qiantang River basin and (iv) provide a strong information support and new research method for optimizing the Qiantang River land use structure and achieving optimal allocation of land resources and scientific management.

Publications Copernicus
Download
Citation
Share