Articles | Volume 7, issue 5
https://doi.org/10.5194/se-7-1417-2016
https://doi.org/10.5194/se-7-1417-2016
Review article
 | 
21 Oct 2016
Review article |  | 21 Oct 2016

Folding and necking across the scales: a review of theoretical and experimental results and their applications

Stefan Markus Schmalholz and Neil Sydney Mancktelow

Related authors

Buoyancy versus shear forces in building orogenic wedges
Lorenzo G. Candioti, Thibault Duretz, Evangelos Moulas, and Stefan M. Schmalholz
Solid Earth, 12, 1749–1775, https://doi.org/10.5194/se-12-1749-2021,https://doi.org/10.5194/se-12-1749-2021, 2021
Short summary
Impact of upper mantle convection on lithosphere hyperextension and subsequent horizontally forced subduction initiation
Lorenzo G. Candioti, Stefan M. Schmalholz, and Thibault Duretz
Solid Earth, 11, 2327–2357, https://doi.org/10.5194/se-11-2327-2020,https://doi.org/10.5194/se-11-2327-2020, 2020
Short summary
Control of 3-D tectonic inheritance on fold-and-thrust belts: insights from 3-D numerical models and application to the Helvetic nappe system
Richard Spitz, Arthur Bauville, Jean-Luc Epard, Boris J. P. Kaus, Anton A. Popov, and Stefan M. Schmalholz
Solid Earth, 11, 999–1026, https://doi.org/10.5194/se-11-999-2020,https://doi.org/10.5194/se-11-999-2020, 2020
Short summary
Tectonic inheritance controls nappe detachment, transport and stacking in the Helvetic nappe system, Switzerland: insights from thermomechanical simulations
Dániel Kiss, Thibault Duretz, and Stefan Markus Schmalholz
Solid Earth, 11, 287–305, https://doi.org/10.5194/se-11-287-2020,https://doi.org/10.5194/se-11-287-2020, 2020
Short summary

Related subject area

Tectonics
Oblique rifting triggered by slab tearing: the case of the Alboran rifted margin in the eastern Betics
Marine Larrey, Frédéric Mouthereau, Damien Do Couto, Emmanuel Masini, Anthony Jourdon, Sylvain Calassou, and Véronique Miegebielle
Solid Earth, 14, 1221–1244, https://doi.org/10.5194/se-14-1221-2023,https://doi.org/10.5194/se-14-1221-2023, 2023
Short summary
Melt-enhanced strain localization and phase mixing in a large-scale mantle shear zone (Ronda peridotite, Spain)
Sören Tholen, Jolien Linckens, and Gernold Zulauf
Solid Earth, 14, 1123–1154, https://doi.org/10.5194/se-14-1123-2023,https://doi.org/10.5194/se-14-1123-2023, 2023
Short summary
Selective inversion of rift basins in lithospheric-scale analogue experiments
Anindita Samsu, Weronika Gorczyk, Timothy Chris Schmid, Peter Graham Betts, Alexander Ramsay Cruden, Eleanor Morton, and Fatemeh Amirpoorsaeed
Solid Earth, 14, 909–936, https://doi.org/10.5194/se-14-909-2023,https://doi.org/10.5194/se-14-909-2023, 2023
Short summary
Networks of geometrically coherent faults accommodate Alpine tectonic inversion offshore SW Iberia
Tiago M. Alves
EGUsphere, https://doi.org/10.5194/egusphere-2023-1671,https://doi.org/10.5194/egusphere-2023-1671, 2023
Short summary
The link between Somalian Plate rotation and the East African Rift System: an analogue modelling study
Frank Zwaan and Guido Schreurs
Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023,https://doi.org/10.5194/se-14-823-2023, 2023
Short summary

Cited articles

Abbassi, M. R. and Mancktelow, N. S.: The effect of initial perturbation shape and symmetry on fold development, J. Struct. Geol., 12, 273–282, 1990.
Abbassi, M. R. and Mancktelow, N. S.: Single layer buckle folding in non-linear materials-I: Experimental study of fold development from an isolated initial perturbation, J. Struct. Geol., 14, 85–104, 1992.
Abe, S. and Urai, J. L.: Discrete element modeling of boudinage: Insights on rock rheology, matrix flow, and evolution of geometry, J. Geophys. Res.-Solid Earth, 117, B01407, https://doi.org/10.1029/2011JB008555, 2012.
Abe, S., Urai, J. L., and Kettermann, M.: Fracture patterns in nonplane strain boudinage-insights from 3-D discrete element models, J. Geophys. Res.-Solid Earth, 118, 1304–1315, 2013.
Adamuszek, M., Schmid, D. W., and Dabrowski, M.: Fold geometry toolbox–Automated determination of fold shape, shortening, and material properties, J. Struct. Geol., 33, 1406–1416, 2011.
Short summary
About 200 years ago in 1815 Sir James Hall made his famous analogue experiments, which showed probably for the first time that natural folds in ductile rock are the result of a horizontal compression. If such rocks are extended, then the rock layers can thin only locally, which is a process termed necking, and the resulting structure is often termed pinch-and-swell. We review here theoretical and experimental results on folding and necking on all geological scales.