Articles | Volume 7, issue 1
https://doi.org/10.5194/se-7-229-2016
https://doi.org/10.5194/se-7-229-2016
Research article
 | 
10 Feb 2016
Research article |  | 10 Feb 2016

On the thermal gradient in the Earth's deep interior

M. Tirone

Related authors

Chemical heterogeneities in the mantle: progress towards a general quantitative description
Massimiliano Tirone
Solid Earth, 10, 1409–1428, https://doi.org/10.5194/se-10-1409-2019,https://doi.org/10.5194/se-10-1409-2019, 2019
Short summary

Related subject area

Geodynamics
The effect of temperature-dependent material properties on simple thermal models of subduction zones
Iris van Zelst, Cedric Thieulot, and Timothy J. Craig
Solid Earth, 14, 683–707, https://doi.org/10.5194/se-14-683-2023,https://doi.org/10.5194/se-14-683-2023, 2023
Short summary
The role of lithospheric thermal structure in the development of lateral heterogeneous of the continental collision system
Mengxue Liu, Dinghui Yang, and Rui Qi
EGUsphere, https://doi.org/10.5194/egusphere-2023-1388,https://doi.org/10.5194/egusphere-2023-1388, 2023
Short summary
Glacial isostatic adjustment strain rate – stress paradox in the Western Alps, impact on active faults and seismicity
Juliette Grosset, Stephane Mazzotti, and Philippe Vernant
EGUsphere, https://doi.org/10.5194/egusphere-2023-538,https://doi.org/10.5194/egusphere-2023-538, 2023
Short summary
Plume–ridge interactions: ridgeward versus plate-drag plume flow
Fengping Pang, Jie Liao, Maxim D. Ballmer, and Lun Li
Solid Earth, 14, 353–368, https://doi.org/10.5194/se-14-353-2023,https://doi.org/10.5194/se-14-353-2023, 2023
Short summary
Transport mechanisms of hydrothermal convection in faulted tight sandstones
Guoqiang Yan, Benjamin Busch, Robert Egert, Morteza Esmaeilpour, Kai Stricker, and Thomas Kohl
Solid Earth, 14, 293–310, https://doi.org/10.5194/se-14-293-2023,https://doi.org/10.5194/se-14-293-2023, 2023
Short summary

Cited articles

Andrault, D., Muñoz, M., Bolfan-Casanova, N., Guignot, N., Perrillat, J.-P., Aquilanti, G., and Pascarelli, S.: Experimental evidence for perovskite and post-perovskite coexistence throughout the whole D region, Earth Plan. Sc. Lett., 293, 90–96, 2010.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N.: Transport Phenomena, 2nd Edn., John Wiley and Sons, New York, USA, 895 pp., 2002.
Callen, H. B.: Thermodynamics and an Introduction to Thermostatics, 2nd Edn., John Wiley and Sons, New York, USA, 493 pp., 1985.
Denbigh, K.: The Principles of Chemical Equilibrium: With Applications in Chemistry and Chemical Engineering, 3rd Edn., Cambridge University Press, Cambridge, UK, 494 pp., 1971.
Dodson, M. H.: Isenthalpic flow, Joule–Kelvin coefficients and mantle convection, Nature, 234, p. 212, 1971.
Download
Short summary
This study aims to present a comparison of the thermal gradient in the Earth mantle computed from full-scale geodynamic thermal models and from the thermodynamic description provided by the Joule-Thomson (JT) formulation. The main result is that the thermal gradient from the JT model is in good agreement with the full-scale geodynamic models and it is better suited than the isentropic (adiabatic reversible) thermal model to describe temperature variations in the planetary interiors.