Articles | Volume 8, issue 6
https://doi.org/10.5194/se-8-1181-2017
https://doi.org/10.5194/se-8-1181-2017
Method article
 | 
24 Nov 2017
Method article |  | 24 Nov 2017

Analytical solution for viscous incompressible Stokes flow in a spherical shell

Cedric Thieulot

Related authors

Quantifying mantle mixing through configurational Entropy
Erik van der Wiel, Cedric Thieulot, and Douwe van Hinsbergen
EGUsphere, https://doi.org/10.31223/X56971,https://doi.org/10.31223/X56971, 2023
Short summary
Benchmarking the accuracy of higher order particle methods in geodynamic models of transient flow
Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Elbridge Gerry Puckett, and Cedric Thieulot
EGUsphere, https://doi.org/10.5194/egusphere-2023-2765,https://doi.org/10.5194/egusphere-2023-2765, 2023
Short summary
The effect of temperature-dependent material properties on simple thermal models of subduction zones
Iris van Zelst, Cedric Thieulot, and Timothy J. Craig
Solid Earth, 14, 683–707, https://doi.org/10.5194/se-14-683-2023,https://doi.org/10.5194/se-14-683-2023, 2023
Short summary
Benchmark forward gravity schemes: the gravity field of a realistic lithosphere model WINTERC-G
Barend Cornelis Root, Josef Sebera, Wolfgang Szwillus, Cedric Thieulot, Zdeněk Martinec, and Javier Fullea
Solid Earth, 13, 849–873, https://doi.org/10.5194/se-13-849-2022,https://doi.org/10.5194/se-13-849-2022, 2022
Short summary
101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth
Iris van Zelst, Fabio Crameri, Adina E. Pusok, Anne Glerum, Juliane Dannberg, and Cedric Thieulot
Solid Earth, 13, 583–637, https://doi.org/10.5194/se-13-583-2022,https://doi.org/10.5194/se-13-583-2022, 2022
Short summary

Related subject area

Geodynamics
Modeling liquid transport in the Earth's mantle as two-phase flow: effect of an enforced positive porosity on liquid flow and mass conservation
Changyeol Lee, Nestor G. Cerpa, Dongwoo Han, and Ikuko Wada
Solid Earth, 15, 23–38, https://doi.org/10.5194/se-15-23-2024,https://doi.org/10.5194/se-15-23-2024, 2024
Short summary
Thrusts control the thermal maturity of accreted sediments
Utsav Mannu, David Fernández-Blanco, Ayumu Miyakawa, Taras Gerya, and Masataka Kinoshita
Solid Earth, 15, 1–21, https://doi.org/10.5194/se-15-1-2024,https://doi.org/10.5194/se-15-1-2024, 2024
Short summary
The crustal structure of the Longmenshan fault zone and its implications for seismogenesis: new insight from aeromagnetic and gravity data
Hai Yang, Shengqing Xiong, Qiankun Liu, Fang Li, Zhiye Jia, Xue Yang, Haofei Yan, and Zhaoliang Li
Solid Earth, 14, 1289–1308, https://doi.org/10.5194/se-14-1289-2023,https://doi.org/10.5194/se-14-1289-2023, 2023
Short summary
Earth's core variability from magnetic and gravity field observations
Anita Thea Saraswati, Olivier de Viron, and Mioara Mandea
Solid Earth, 14, 1267–1287, https://doi.org/10.5194/se-14-1267-2023,https://doi.org/10.5194/se-14-1267-2023, 2023
Short summary
The role of continental lithospheric thermal structure in the evolution of orogenic systems: application to the Himalayan–Tibetan collision zone
Mengxue Liu, Dinghui Yang, and Rui Qi
Solid Earth, 14, 1155–1168, https://doi.org/10.5194/se-14-1155-2023,https://doi.org/10.5194/se-14-1155-2023, 2023
Short summary

Cited articles

Arrial, P.-A., Flyer, N., Wright, G. B., and Kellogg, L. H.: On the sensitivity of 3-D thermal convection codes to numerical discretization: a model intercomparison, Geosci. Model Dev., 7, 2065–2076, https://doi.org/10.5194/gmd-7-2065-2014, 2014.
Bangerth, W., Hartmann, R., and Kanschat, G.: deal.II – a general purpose object oriented finite element library, ACM T. Math. Software, 33, https://doi.org/10.1145/1268776.1268779, 2007.
Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., and Wells, D.: The deal.ii library, version 8.4, J. Numer. Math., 24, https://doi.org/10.1515/jnma-2016-1045, 2016.
Bangerth, W., Dannberg, J., Gassmöller, R., Heister, T., and others: ASPECT: Advanced Solver for Problems in Earth's ConvecTion, User Manual, https://doi.org/10.6084/m9.figshare.4865333, 2017.
Bercovici, D., Schubert, G., Glatzmaier, G., and Zebib, A.: Three-dimensional thermal convection in a spherical shell, J. Fluid Mech., 206, 75–104, 1989.
Download
Short summary
I present a new family of analytical flow solutions to the incompressible Stokes equation in a spherical shell. The velocity is tangential to both inner and outer boundaries, the viscosity is radial, and the solution has been designed so that the expressions for velocity, pressure, and body force are simple to implement in (geodynamics) codes. This forms the basis of a numerical benchmark for convection codes, and I have implemented it in two finite-element codes.