Articles | Volume 8, issue 1
https://doi.org/10.5194/se-8-235-2017
https://doi.org/10.5194/se-8-235-2017
Research article
 | 
23 Feb 2017
Research article |  | 23 Feb 2017

The deep Earth origin of the Iceland plume and its effects on regional surface uplift and subsidence

Nicholas Barnett-Moore, Rakib Hassan, Nicolas Flament, and Dietmar Müller

Related authors

On the impact of true polar wander on heat flux patterns at the core-mantle boundary
Thomas Frasson, Stéphane Labrosse, Henri-Claude Nataf, Nicolas Coltice, and Nicolas Flament
EGUsphere, https://doi.org/10.5194/egusphere-2023-1782,https://doi.org/10.5194/egusphere-2023-1782, 2023
Short summary
A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate–mantle system evolution
R. Dietmar Müller, Nicolas Flament, John Cannon, Michael G. Tetley, Simon E. Williams, Xianzhi Cao, Ömer F. Bodur, Sabin Zahirovic, and Andrew Merdith
Solid Earth, 13, 1127–1159, https://doi.org/10.5194/se-13-1127-2022,https://doi.org/10.5194/se-13-1127-2022, 2022
Short summary
Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021,https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Surrogate-assisted Bayesian inversion for landscape and basin evolution models
Rohitash Chandra, Danial Azam, Arpit Kapoor, and R. Dietmar Müller
Geosci. Model Dev., 13, 2959–2979, https://doi.org/10.5194/gmd-13-2959-2020,https://doi.org/10.5194/gmd-13-2959-2020, 2020
Short summary
Quantitative stratigraphic analysis in a source-to-sink numerical framework
Xuesong Ding, Tristan Salles, Nicolas Flament, and Patrice Rey
Geosci. Model Dev., 12, 2571–2585, https://doi.org/10.5194/gmd-12-2571-2019,https://doi.org/10.5194/gmd-12-2571-2019, 2019
Short summary

Related subject area

Geodynamics
Modeling liquid transport in the Earth's mantle as two-phase flow: effect of an enforced positive porosity on liquid flow and mass conservation
Changyeol Lee, Nestor G. Cerpa, Dongwoo Han, and Ikuko Wada
Solid Earth, 15, 23–38, https://doi.org/10.5194/se-15-23-2024,https://doi.org/10.5194/se-15-23-2024, 2024
Short summary
Thrusts control the thermal maturity of accreted sediments
Utsav Mannu, David Fernández-Blanco, Ayumu Miyakawa, Taras Gerya, and Masataka Kinoshita
Solid Earth, 15, 1–21, https://doi.org/10.5194/se-15-1-2024,https://doi.org/10.5194/se-15-1-2024, 2024
Short summary
The crustal structure of the Longmenshan fault zone and its implications for seismogenesis: new insight from aeromagnetic and gravity data
Hai Yang, Shengqing Xiong, Qiankun Liu, Fang Li, Zhiye Jia, Xue Yang, Haofei Yan, and Zhaoliang Li
Solid Earth, 14, 1289–1308, https://doi.org/10.5194/se-14-1289-2023,https://doi.org/10.5194/se-14-1289-2023, 2023
Short summary
Earth's core variability from magnetic and gravity field observations
Anita Thea Saraswati, Olivier de Viron, and Mioara Mandea
Solid Earth, 14, 1267–1287, https://doi.org/10.5194/se-14-1267-2023,https://doi.org/10.5194/se-14-1267-2023, 2023
Short summary
The role of continental lithospheric thermal structure in the evolution of orogenic systems: application to the Himalayan–Tibetan collision zone
Mengxue Liu, Dinghui Yang, and Rui Qi
Solid Earth, 14, 1155–1168, https://doi.org/10.5194/se-14-1155-2023,https://doi.org/10.5194/se-14-1155-2023, 2023
Short summary

Cited articles

Anell, I., Thybo, H., and Artemieva, I.: Cenozoic uplift and subsidence in the North Atlantic region: geological evidence revisited, Tectonophysics, 474, 78–105, 2009.
Artemieva, I. M.: Global 1  ×  1 thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution, Tectonophysics, 416, 245–277, 2006.
Barnett-Moore, N., Müller, R. D., Williams, S., Skogseid, J., and Seton, M.: A reconstruction of the North Atlantic since the earliest Jurassic, Basin Res., 1–26, https://doi.org/10.1111/bre.12214, 2016.
Bertram, G. and Milton, N.: Reconstructing basin evolution from sedimentary thickness; the importance of palaeobathymetric control, with reference to the North Sea, Basin Res., 1, 247–257, 1988.
Bower, D. J., Gurnis, M., and Seton, M.: Lower mantle structure from paleogeographically constrained dynamic Earth models, Geochem. Geophy. Geosy., 14, 44–63, 2013.
Download
Short summary
We use 3D mantle flow models to investigate the evolution of the Iceland plume in the North Atlantic. Results show that over the last ~ 100 Myr a remarkably stable pattern of flow in the lowermost mantle beneath the region resulted in the formation of a plume nucleation site. At the surface, a model plume compared to published observables indicates that its large plume head, ~ 2500 km in diameter, arriving beneath eastern Greenland in the Palaeocene, can account for the volcanic record and uplift.