Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.495 IF 3.495
  • IF 5-year<br/> value: 3.386 IF 5-year
    3.386
  • CiteScore<br/> value: 3.70 CiteScore
    3.70
  • SNIP value: 0.783 SNIP 0.783
  • SJR value: 1.039 SJR 1.039
  • IPP value: 1.987 IPP 1.987
  • h5-index value: 20 h5-index 20
Solid Earth, 8, 499-513, 2017
https://doi.org/10.5194/se-8-499-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
12 Apr 2017
Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China
Yusong Deng1, Chongfa Cai1, Dong Xia2, Shuwen Ding1, Jiazhou Chen1, and Tianwei Wang1 1Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) of the Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
2College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, People's Republic of China
Abstract. Collapsing gullies are one of the most serious soil erosion problems in the tropical and subtropical areas of southern China. However, few studies have been performed on the relationship of soil Atterberg limits with soil profiles of the collapsing gullies. Soil Atterberg limits, which include plastic limit and liquid limit, have been proposed as indicators for soil vulnerability to degradation. Here, the soil Atterberg limits within different weathering profiles and their relationships with soil physicochemical properties were investigated by characterizing four collapsing gullies in four counties in the hilly granitic region of southern China. The results showed that with the fall of weathering degree, there was a sharp decrease in plastic limit, liquid limit, plasticity index, soil organic matter, cation exchange capacity and free iron oxide. Additionally, there was a gradual increase in liquidity index, a sharp increase in particle density and bulk density followed by a slight decline, a decrease in the finer soil particles, a noticeable decline in the clay contents, and a considerable increase in the gravel and sand contents. The plastic limit varied from 19.43 to 35.93 % in TC, 19.51 to 33.82 % in GX, 19.32 to 35.58 % in AX and 18.91 to 36.56 % in WH, while the liquid limit varied from 30.91 to 62.68 % in TC, 30.89 to 57.70 % in GX, 32.48 to 65.71 % in AX and 30.77 to 62.70 % in WH, respectively. The soil Atterberg limits in the sandy soil layers and detritus layers were lower than those in the surface layers and red soil layers, which results in higher vulnerability of the sandy soil layers and detritus layers to erosion and finally the formation of the collapsing gully. The regression analyses showed that soil Atterberg limits had significant and positive correlation with SOM, clay content, cationic exchange capacity and Fed, significant and negative correlation with sand content and no obvious correlation with other properties. The results of this study revealed that soil Atterberg limits are an informative indicator to reflect the weathering degree of different weathering profiles of the collapsing gullies in the hilly granitic region.

Citation: Deng, Y., Cai, C., Xia, D., Ding, S., Chen, J., and Wang, T.: Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China, Solid Earth, 8, 499-513, https://doi.org/10.5194/se-8-499-2017, 2017.
Publications Copernicus
Download
Short summary
Soil is a sphere of the earth system with a special structure and function. From the point of view of the earth system, soil science should not only study the soil material but also change towards the relationship between the soil and the earth system, which has a profound impact on the human living environment and global change research. The results show the relationship between soil Atterberg limits and the occurrence mechanism of collapsing gullies, which can be used as a reference.
Soil is a sphere of the earth system with a special structure and function. From the point of...
Share