Mineral-leaching chemical transport with runoff and sediment from severely eroded rare-earth tailings in southern China

Huizhong Lu1,2, Longxi Cao1, Yin Liang1, Jiuxuan Yuan1,2, Yayun Zhu1,2, Yi Wang1,2, Yalan Gu1,2, and Qiguo Zhao1

1State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
2University of Chinese Academy of Sciences, Beijing 100049, China

Correspondence to: Yin Liang (yliang@issas.ac.cn)

Abstract. Rare-earth mining has led to severe soil erosion in southern China. Furthermore, the presence of the mineral-leaching chemical ammonium sulfate in runoff and sediment poses a serious environmental threat to downstream water bodies. In this paper, the characteristics of mineral-leaching chemicals in surface soil samples collected in the field were studied. In addition, NH$_4^+$ and SO$_4^{2-}$ transport via soil erosion was monitored using runoff and sediment samples collected during natural rainfall processes. The results demonstrated that the NH$_4^+$ contents in the surface sediment deposits increased from the top of the heap (6.56 mg kg$^{-1}$) to the gully (8.23 mg kg$^{-1}$) and outside the tailing heap (13.03 mg kg$^{-1}$). The contents of SO$_4^{2-}$ in the different locations of the tailing heaps ranged from 27.71 to 40.33 mg kg$^{-1}$. During typical rainfall events, the absorbed NH$_4^+$ concentrations (2.05, 1.26 mg L$^{-1}$) in runoff were significantly higher than the dissolved concentrations (0.93, 1.04 mg L$^{-1}$), while the absorbed SO$_4^{2-}$ concentrations (2.87, 1.92 mg L$^{-1}$) were significantly lower than the dissolved concentrations (6.55, 7.51 mg L$^{-1}$). The dissolved NH$_4^+$ and SO$_4^{2-}$ concentrations in runoff displayed an exponentially decreasing tendency with increasing transport distance ($Y = 1.02 \cdot \exp(-0.00312X)$; $Y = 3.34 \cdot \exp(-0.0185X)$). No clear trend with increasing distance was observed for the absorbed NH$_4^+$ and SO$_4^{2-}$ contents in transported sediment. The NH$_4^+$ and SO$_4^{2-}$ contents had positive correlations with the silt and clay ratio in transported sediment but negative correlations with the sand ratio. These results provide a better understanding of the transport processes and can be used to develop equations to predict the transport of mineral-leaching chemicals in rare-earth tailings.

1 Introduction

Soil erosion is a global issue of great importance (Morgan, 2005) because it not only degrades soil quality but also leads to pollution associated with runoff and sediment, posing a risk to water and soil quality and human health. Human-driven production activities, especially mining, severely disturb the land and generate tailings, often leading to extremely serious soil erosion (Duque et al., 2015; Zhang et al., 2016; García-Gómez et al., 2014; Gharibreza et al., 2013; Meng et al., 2012; Riley, 1995). The soil erosion process in mining regions releases complex chemical substances into the surrounding environment, including nutrients, heavy metals, radioactive elements, and other contaminants, thereby threatening ecological security (Pascaud et al., 2015; Nascimento et al., 2012; Weng et al., 2012; Gao and Zhou, 2011; Mol and Ouboter, 2004; Razo et al., 2004).

The term “rare-earth element” (REE) refers to 17 elements containing lanthanide series along with scandium and yttrium (Khan et al., 2016). China is the dominant rare-earth element provider and accounts for over 95% of the world production (Tse, 2011). Southern China contains large amounts of lateritic ion-adsorption clay deposits, which are relatively enriched in heavy rare-earth elements (HREEs; Gao and Zhou, 2011). HREEs, which are widely used in aviation, electronics, transportation, and health care, have great signif-
The chemical transport during the erosion process is a complex process. This transport includes substance concentration variations, enrichment ratio variations, and both transport and transformation in runoff and sediment (Reddy and Patrick, 1984; Palis et al., 1990). It is influenced by many factors, such as rainfall intensity, runoff discharge, topography, soil characteristics, land use, vegetation cover, and anthropogenic or natural disturbances. Analysis of the chemical transport mechanism during the soil erosion process is very important for determining the potential chemical contents in both runoff and sediment. The methods used to study soil erosion and chemical transport include laboratory experiments, plot-based experiments, field observations, and watershed-level modeling (Lü et al., 2007). These methods have spatial scale differences, from the slope scale to the catchment scale (Palis et al., 1990; Razo et al., 2004; Ojeda et al., 2006; Zheng et al., 2016). Findings from small spatial-scale experiments should be treated with caution when up-scaling to describe chemical transport because they do not consider changes in the factors with increasing spatial scale. The simplified assumptions of models may fail to capture the chemical transport process, resulting in less accurate predictions of the chemical loads. Existing models, such as AGNPS (Agricultural Non-Point-Source Pollution Model), CREAMS (Chemicals, Runoff, and Erosion from Agricultural Management Systems), and SWAT (Soil and Water Assessment Tool), calculate sediment yield based on the empirical USLE (Universal Soil Loss Equation) model, which does not include substance transport processes (Wu and Chen, 2012; Chaplot, 2005; West and Wali, 1999). In addition, the majority of the studies and models focus on non-point-source pollution in agricultural conditions, such as arable farming, tillage, and row cropping (Ongley et al., 2010). However, relatively few studies have focused specifically on extremely disturbed areas with intense rainfall. Therefore, our current knowledge of the chemical transportation process under serious erosional conditions is inadequate, especially in the lateritic ion-adsorption clay deposits of south China. The contamination situation is unclear, and the mechanism of mineral-leaching chemical transport during the soil erosion process has not been studied. As a large quantity of ammonium sulfate and ammonium bicarbonate were added in the production process, \(\text{NH}_4^+ \) and \(\text{SO}_4^{2-} \) still remain in the REE mining region. It is estimated that the process has generated about 20–25 000 t of wastewater and 300–500 mg L\(^{-1}\) total ammonia nitrogen concentration up until 2005 (Khan et al., 2016). \(\text{NH}_4^+ \) tends to adsorb onto soil, and excess \(\text{NH}_4^+ \) would accelerate soil acidification, reduce soil mineral element content, change soil solution ion composition, and aggravate the soil contamination (Zhou et al., 2014). \(\text{SO}_4^{2-} \) is water soluble, and a high concentration could lead directly to death for plants (Yang, 2009). Different chemicals have unique transportation pathways and primary carriers in runoff. Thus, it is necessary to compare the differences between \(\text{NH}_4^+ \) and \(\text{SO}_4^{2-} \).

The aim of a 2-year field study of runoff and sediment during natural rainfall events in a rare-earth tailing area was to (1) gain an insight into the two leaching chemicals’ spatial distributions at different locations around the tailing heaps and (2) determine the transport characteristics and influencing factors of the two leaching chemicals in runoff, including both dissolved and adsorbed components.

2 Materials and methods

2.1 Study area

The experiment area is located in the Longshe soil erosion warning zone of rare-earth tailings (Fig. 1) in Xin-feng County, Ganzhou, Jiangxi Province, south China (25°23'10'' N, 115°0'26'' E). The region features a subtropical moist monsoon climate with an average annual precipitation of 1500.4 mm, nearly half of which occurs from April to June. The intense rainfall leads to severe soil erosion and substance loss. The annual runoff modulus is 874 mm, and the total amount of annual runoff is approximately 5.2 billion m\(^3\). The mean annual temperature is 19.5 °C, with monthly
averages ranging from −4 to 39.4 °C. The pristine soils are red soils developed from weathered residual granite.

The tailing area is approximately 0.26 km². The tailings were formed in 1986, and the height of the tailings range from 0.83 to 3.45 m. A chain of undulating hills characterizes the topography due to mining and erosion. The mining technique for rare-earth ore is pond leaching, and ponding is one of the most prevalent mining methods. First, the subsurface ore body is mined, and the material is placed in an ammonium sulfate leaching pond to create a rare-earth solution. The REEs in the collected leaching solution are then precipitated with oxalic acid. Finally, the precipitates are turned into R_2O_3 via burning (Chi and Tian, 2007). After this mining process, residual tailing heaps containing acid leaching solution pollutants are formed. The production of 1 t of rare-earth oxide can create 1600–2000 t of tailings (Peng, 2005).

There will be 302 abandoned mines and 191 million tons of tailings by 2020 in the Ganzhou region alone (Packey and Kingsnorth, 2016). No effective measures were taken, and the tailing heaps have experienced considerable soil loss. The tailing sediments in the region are poor in nutrients, strongly acidic, and subjected to substantial active erosion in areas where the original forest vegetation has been totally removed. Plants are rare, and only a few acid-resistant species, such as Dicranopteris and Pinus massoniana, are able to grow beside the tailing heaps. The tailing plots feature two major water erosion forms: gully erosion and slope erosion. The slope erosion can be divided into three types: slopes on the tailing heap surface, slopes in the gully below the tailing heap, and slopes outside the tailing heap. The average gully density is 0.13 km km$^{-2}$, and the average gully sediment bulk density is 1.29 g cm$^{-3}$.

2.2 Sampling procedure

We designed the sample paths and points based on the erosion types and flow direction. Figure 1 showed that one path along a gully (G) and tailing heap (S) was designed. The G–S path was chosen because it had a relatively complete flow track, a long distance, and was not affected by other flow routes. The path length was 170 m, and we set several sample points at intervals of 10 m. The G–S path samples included natural rainfall runoff samples. Three rainfall events were recorded on 16 June 2012 and 15 and 16 May 2013. The precipitation intensities were measured with rainfall gauges and were 0.9, 1.0, and 1.2 mm min$^{-1}$, respectively. These values are typical of the high intensities common during the rainy season in the red soil region in southern China (Ma et al., 2014). The runoff samples were collected close to the surface using pre-cleaned polyethylene bottles. The bottles were immediately placed in dark boxes and processed within 6 h of collection. At least two samples were taken at every sampling point. There were a total of 67 rainfall runoff samples. More-
Table 1. NH$_4^+$ and SO$_4^{2-}$ contents and soil textures in the surface soil samples collected in different locations. Locations A, B and C are the top of the tailing heap, the gully below the tailing heap, and the area outside the tailing heap, respectively. The texture classification standard is according to the USDA (United States Department of Agriculture).

<table>
<thead>
<tr>
<th>Locations</th>
<th>NH$_4^+$ (mg kg$^{-1}$)</th>
<th>SO$_4^{2-}$ (mg kg$^{-1}$)</th>
<th>Sand 2–0.05 mm</th>
<th>Silt 0.05–0.002 mm</th>
<th>Clay < 0.002 mm</th>
<th>Soil texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.56 ± 1.87</td>
<td>40.33 ± 4.58</td>
<td>60.35 ± 4.35</td>
<td>36.07 ± 4.26</td>
<td>3.59 ± 1.83</td>
<td>sandy loam</td>
</tr>
<tr>
<td>B</td>
<td>8.23 ± 1.46</td>
<td>27.71 ± 3.95</td>
<td>92.63 ± 1.31</td>
<td>7.17 ± 1.18</td>
<td>0.20 ± 0.19</td>
<td>sandy soil</td>
</tr>
<tr>
<td>C</td>
<td>13.03 ± 3.42</td>
<td>32.11 ± 4.42</td>
<td>83.84 ± 5.44</td>
<td>15.56 ± 5.19</td>
<td>0.61 ± 0.36</td>
<td>loamy sand</td>
</tr>
</tbody>
</table>

2.3 Analytical methods

Runoff samples were measured as two phases, i.e., runoff water and sediment. The samples were filtered in the field with a 0.45 μm pore-size membrane to separate the sediment from the water and measure dissolved and absorbed substances. Dissolved NH$_4^+$ and SO$_4^{2-}$ concentrations and pH values were measured in the runoff water, and absorbed NH$_4^+$ and SO$_4^{2-}$ contents, sediment concentrations, and particle distributions were measured in the runoff sediment samples. The precipitation intensities differed among the rainfall events, and the dissolved chemical concentrations increased with increasing precipitation intensity (Zhang et al., 2016). Thus, the data were standardized according to the precipitation intensities, i.e., the standardized concentrations were equal to the real concentrations divided by the corresponding precipitation intensity. The NH$_4^+$ and SO$_4^{2-}$ contents and particle size distributions were also measured in the surface soil.

The pH values were determined using the glass calomel electrode method. The dissolved and absorbed NH$_4^+$ concentrations were analyzed colorimetrically using a flow injection analyzer. The dissolved and absorbed SO$_4^{2-}$ concentrations were determined using turbidimetry through the formation of BaSO$_4$ via the addition of BaCl$_2$. The sediment particle distribution was determined by sieving in combination with the sieve-pipette method (Lu, 2000). Each sediment sample was divided into three sediment size groups: sand (2–0.05 mm), silt (0.05–0.002 mm), and clay (< 0.002 mm).

2.4 Data analysis

One-way analysis of variance (ANOVA) was used to compare the difference between the leaching chemicals at different locations. Linear and nonlinear regressions were conducted to establish the relationship between the NH$_4^+$ and SO$_4^{2-}$ concentrations and the influencing factors. The coefficient of determination (R^2) was used to evaluate the performance of the applied regression equations. All of the analyses were performed using IBM SPSS statistics for Windows Version 19.0 (IBM Corp., Armonk, NY, USA), and all graphical displays were prepared using ORIGIN8.0 (OriginLab, Northampton, MA, USA) and ArcGIS 9.3 (ESRI, Redlands, CA, USA).

3 Results

3.1 NH$_4^+$ and SO$_4^{2-}$ spatial distributions in surface soils

The NH$_4^+$ and SO$_4^{2-}$ contents in surface runoff depends on the corresponding content in the tailing heaps. Therefore, the NH$_4^+$ and SO$_4^{2-}$ content of surface sediments must be determined in different locations. Due to the long duration of runoff and sediment transportation, the surface sediment on the top of the tailing heap moved first to the gully below the tailing heap and then beyond the tailing heap along the flow direction (Fig. 1). Table 1 shows the average NH$_4^+$ and SO$_4^{2-}$ contents in the surface sediment samples collected at different locations. From A to B and C, the NH$_4^+$ contents increased. The value on top of the heap was 6.56 mg kg$^{-1}$, and the values outside the heap reached as high as 13.03 mg kg$^{-1}$. The trend observed for the SO$_4^{2-}$ values did not agree with that of the NH$_4^+$ values. The SO$_4^{2-}$ content was highest on top of the tailing heap, lowest in the gully below the tailing heap, and intermediate outside of the tailing heap. The SO$_4^{2-}$ content in the gully below the tailing heap was similar to that outside the tailing heap. The different sediment particle distributions led to different textures in the three locations (Table 1). The sediment on top of the tailing heap had the highest silt and clay contents, and its texture was sandy loam. The texture in the gully below the tailing heap was sandy soil.
cause the sand content exceeded 90%. Similarly, the texture outside the tailing heap was loamy sand. The texture difference between positions A, B, and C might be due to the long period of time associated with the runoff process.

3.2 Dissolved and absorbed NH$_4^+$ and SO$_4^{2-}$ concentrations in runoff

Dissolved and absorbed NH$_4^+$ and SO$_4^{2-}$ concentrations in the runoff samples at different locations can be found in Table 2. Runoff is the main driving force for soil erosion and chemical transport. In the case of runoff movement, the chemicals adsorbed onto the sediment particles enter overland flow. Additionally, the dissolved chemicals also enter the sediment surface. After more than 20 years of leaching and weathering, the runoff was still acidic. The runoff pH values were nearly the same at locations B (4.51) and C (4.56). The results of the ANOVA (Table 2) indicated that highly significant differences were observed between the dissolved and absorbed leaching chemicals. The absorbed NH$_4^+$ concentrations at sites B (2.05 mg L$^{-1}$) and C (1.26 mg L$^{-1}$) were significantly higher than the absorbed SO$_4^{2-}$ at sites B (0.93 mg L$^{-1}$) and C (1.04 mg L$^{-1}$), respectively (ANOVA, p = 0.001 and p = 0.000). This phenomenon shows that NH$_4^+$ was mainly transported by sediment in the runoff. In addition, the dissolved SO$_4^{2-}$ concentrations at sites B (6.55 mg L$^{-1}$) and C (7.51 mg L$^{-1}$) were significantly greater than the dissolved NH$_4^+$ contents at sites B (0.93 mg L$^{-1}$) and C (1.04 mg L$^{-1}$), respectively (ANOVA, p = 0.001 and p = 0.000). It is evident that SO$_4^{2-}$ was mainly transported in runoff. The primary transportation mechanisms for NH$_4^+$ and SO$_4^{2-}$ in runoff were different. Moreover, the dissolved NH$_4^+$ and SO$_4^{2-}$ concentrations (0.93 and 6.55 mg L$^{-1}$) at location B were smaller than those at location C (1.04 and 7.51 mg L$^{-1}$), whereas the absorbed NH$_4^+$ and SO$_4^{2-}$ concentrations at location B (2.05 and 2.87 mg L$^{-1}$) were greater than those at location C (1.26 and 1.92 mg L$^{-1}$). This pattern is likely due to enrichment of the mineral-leaching chemicals in the gully and lower enrichment ratios outside of the gully. However, only absorbed NH$_4^+$ concentrations displayed significant differences at location B and C (ANOVA, p = 0.04). The gully sediment concentration (288.29 g L$^{-1}$) was also significantly greater than that outside the gully (157.28 g L$^{-1}$) (ANOVA, p = 0.01).

3.3 Dissolved and absorbed NH$_4^+$ and SO$_4^{2-}$ transport characteristics along flow route

Data for the two rainfall days in 2013 were used for a trend analysis. The dissolved NH$_4^+$ transportation characteristics are shown in Fig. 2a. We took the representative G–S path as an example to analyze the transport characteristics. The NH$_4^+$ concentrations gradually decreased with transport distance along the sample path. Exponential functions were used to fit the tendency because the concentrations approached 0 at long distances. The dissolved NH$_4^+$ concentrations decreased exponentially ($Y = 1.023 \cdot \exp(-0.00312X)$; $R^2 = 0.57$) as a function of the transport distance along the G–S path. The dissolved SO$_4^{2-}$ transport trend was consistent with that of NH$_4^+$ in the sampled runoff. Figure 2b shows the SO$_4^{2-}$ migration. The SO$_4^{2-}$ concentrations also decreased exponentially ($Y = 3.34 \cdot \exp(-0.0185X)$; $R^2 = 0.57$) with increasing transport distance along the G–S path. However, the relationships for NH$_4^+$ and SO$_4^{2-}$ transport differed. The dissolved NH$_4^+$ concentrations ranged from 0.45 to 1.17 mg L$^{-1}$, while the dissolved SO$_4^{2-}$ concentrations ranged from 2.19 to 3.45 mg L$^{-1}$. Moreover, the attenuation coefficients of the SO$_4^{2-}$ transport fit (3.34 and 0.0185) were greater than those of NH$_4^+$ (1.023 and 0.00312), indicating that the SO$_4^{2-}$ concentrations decreased faster than the NH$_4^+$ concentrations.

The absorbed NH$_4^+$ and SO$_4^{2-}$ transport was influenced not only by precipitation intensity and flow energy but also by the erosion amount and sediment transport capacity. The sediment runoff process was so complex that a standardization of NH$_4^+$ and SO$_4^{2-}$ concentrations using precipitation intensities was impossible. Thus, rainfall data for 15 May 2013, were used as an example to analyze the absorbed chemicals in the runoff sediment samples. The absorbed NH$_4^+$ transport characteristics are shown in Fig. 3a. Initially (transport distance 0–120 m), the absorbed NH$_4^+$ concentrations showed a weak descending trend. However, when the sediment moved beyond 120 m, the concentrations increased to a distance of 180 m. Figure 3b show that the absorbed SO$_4^{2-}$ transport was quite different from that of NH$_4^+$ in the sampled runoff sediment. The absorbed SO$_4^{2-}$ concentrations exhibited substantial variability as a function of the transport distance. The transport characteristics of the absorbed NH$_4^+$ and SO$_4^{2-}$ in the runoff sediment cannot be described as a linear function because it is difficult to identify a distinct trend.

3.4 Variations in absorbed NH$_4^+$ and SO$_4^{2-}$ contents with sand, silt, and clay particles

The grain size analysis was carried out in order to find correlation between leaching chemicals and the sediment particle size distributions. Figures 4 and 5 showed that the absorbed NH$_4^+$ and SO$_4^{2-}$ concentrations in the sampled runoff exhibited similar relationships with the sediment particle size distribution. The NH$_4^+$ and SO$_4^{2-}$ content displayed linearly decreasing trends with increasing sand content and linearly increasing trends with increasing silt and clay contents.

4 Discussion

In this paper, to study the transport characteristics of mineral-leaching chemicals, soil on rare-earth tailings was sam-
Table 2. Average dissolved and absorbed NH$_4^+$ and SO$_4^{2-}$ concentrations in the runoff samples at different locations. Locations B and C represent the gully below the tailing heap and outside the tailing heap, respectively. The asterisk refers to the very significant difference between the two statuses (dissolved and absorbed) of the same chemical at the same location at the 0.01 level.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Dissolved</th>
<th>Absorbed</th>
<th>Dissolved</th>
<th>Absorbed</th>
<th>Runoff volume</th>
<th>Sediment concentration</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NH$_4^+$</td>
<td>SO$_4^{2-}$</td>
<td>NH$_4^+$</td>
<td>SO$_4^{2-}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mg L$^{-1}$</td>
<td>g L$^{-1}$</td>
<td>mg L$^{-1}$</td>
<td>g L$^{-1}$</td>
<td>L</td>
<td>g L$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.93</td>
<td>6.55</td>
<td>2.05*</td>
<td>2.87*</td>
<td>0.37</td>
<td>288.29</td>
<td>4.51</td>
</tr>
<tr>
<td>C</td>
<td>1.04</td>
<td>7.51</td>
<td>1.26*</td>
<td>1.92*</td>
<td>0.39</td>
<td>157.28</td>
<td>4.56</td>
</tr>
</tbody>
</table>

Figure 2. Dissolved NH$_4^+$ and SO$_4^{2-}$ concentrations variations with increasing transport distance in runoff.

4.1 The driving mechanism of the NH$_4^+$ and SO$_4^{2-}$ spatial distributions

This study examined the transportation characteristics of NH$_4^+$ and SO$_4^{2-}$ in runoff in order to explain their distribution in the surface soil at different locations. The main carrier mechanism is an important factor influencing chemical contents along the transport path. NH$_4^+$ was mainly transported with the sediment in the runoff (Table 2), which was especially enriched in fine particles (Fig. 4). It is possible that NH$_4^+$ has a strong affinity to the negatively charged particles (Tian et al., 2007). The NH$_4^+$ contents exhibited an increasing trend from the top of the tailing heap to beyond the heap (Table 1). Similar results have been reported by other studies.

Particulate N was the main form in runoff in some ecosystems (Douglas et al., 1998; Zheng et al., 2005). Zhang and Shao (2000) revealed that NH$_4^+$ was mainly adsorbed onto soil particles, whereas nitrate N may more easily exist in soil solution. Zheng et al. (2005) also found that NH$_4^+$ was concentrated in clay, which was transported with the eroded sediment in newly deforested areas on the Loess Plateau. However, our results differ from those of Fu et al. (2004), who reported that NH$_4^+$ is mainly transported in its dissolved form in runoff. Differences in land use, especially tillage and fertility management, may be responsible for these differences.

The main transport medium of SO$_4^{2-}$ was runoff, and Table 2 demonstrated that SO$_4^{2-}$ moved primarily in a dissolved state, which resulted in a non-significant transport trend from locations A to C in deposited sediment (Table 1). Our results demonstrate that SO$_4^{2-}$ absorption occurred rarely in the upper soil; Alewell and Giesemann (1996) also reported that SO$_4^{2-}$ sorption was not observed in the upper soil (\leq 1 m depth), and SO$_4^{2-}$ solutions may have infiltrated from upper soil layers into deeper soil layers (1–12 m depth), where more SO$_4^{2-}$ sorption was present. The dissolved SO$_4^{2-}$ concentration may be related to pH values. Sharpley et al. (1991) conducted a 4-year field experiment to study the SO$_4^{2-}$ transport...
in runoff and reported that the SO_4^{2-} concentration increases with decreasing pH in runoff.

4.2 NH$_4^+$ and SO$_4^{2-}$ transport dynamic in flow and sediment process

Although the main pattern of transport differed between NH$_4^+$ and SO$_4^{2-}$ in the runoff, the total concentrations involved both dissolved and absorbed states. The release of chemicals to the runoff involves the adsorption and desorption between the sediment surface and their transport by advection or by ordinary or enhanced diffusion (Wallach et al., 1989). The dissolved NH$_4^+$ and SO$_4^{2-}$ decreased exponentially during the runoff transport process (Fig. 2) because the dilution associated with increasing runoff discharge and flow diffusion dominated the dissolved chemical transport under these conditions. Schlesinger et al. (2000) reported that the concentrations of dissolved constituents declined with increasing total runoff volume, reflecting a rapid dilution of dissolved constituents with increasing discharge. Razo et al. (2004) also observed an inverse relationship between the distance and the concentration of metals in water from the pollution sources. However, the dissolved SO$_4^{2-}$ concentration decreased faster than that of NH$_4^+$, which was probably because dissolved SO$_4^{2-}$ was mainly transported in runoff water. Thus, runoff discharge had a larger influence on the dissolved SO$_4^{2-}$ transportation. Abu Bakar et al. (2015) found SO$_4^{2-}$ was diluted by the large amounts of water observed during high-flow events. In addition, the chemical desorption kinetics, which may be limited by the contact time and sediment surface, should be an important control for dissolved chemicals in runoff (Gilley et al., 2012).

The absorbed NH$_4^+$ and SO$_4^{2-}$ transport was more complicated in the runoff sediment. Tailing heaps provided a large quantity of sediments to the gully at the beginning of erosion.
Thus, the sediment concentration and the absorbed leaching chemicals continued to accumulate. When the runoff and runoff-associated sediment flowed beyond the heaps, the sediment concentration exceeded the runoff transport capacity as the flow decreased, resulting in gradual deposition of the sediment. Consequently, the sediment concentration and absorbed NH_4^+ and SO_4^{2-} concentrations decreased (Table 2). As mentioned above, NH_4^+ was transported in an absorbed state on fine particles (Fig. 4). Finer particles, especially clay, are typically considered to be the sediment size fraction that is most important in transporting adsorbed chemicals in soil and overland flow (Slattery and Burt, 1997; Young and Onstad, 1978; Hardy et al., 2016). Smaller particles, particularly silt and clay, have relatively greater specific surface areas and can therefore adsorb and transport large quantities of chemicals (Lü et al., 2007). Finer particles are more easily transported in runoff, resulting in increased fine-particle levels with transport distance along the path (Flanagan and Nearing, 2000; Parsons et al., 2006). More finer sediment reached the end of the deposition region than did coarser particles, and more chemicals were absorbed on fine sediment particles. This is known as the selectivity of the erosion process (Sharpley, 1985; Zhang et al., 2016). Although the absolute quantity of sediment decreased, the percentage of relatively fine particles increased. This process explains why the absorbed NH_4^+ transport characteristics in runoff showed an increasing trend over the last several meters (120–180 m; Fig. 3a). The trend slightly decreased at first; thus, the dynamic accumulation, remobilization, and absorption-desorption in the transport process may influence the absorbed NH_4^+ trend over the first few tens of meters (Ashraf and Borah, 1992; Huang et al., 2007). Although the absorbed SO_4^{2-} concentration in the runoff also increased with finer particles and decreased with more sand particles (Fig. 5), the dissolved state is the major SO_4^{2-} transport form. The reason for this may differ from that for NH_4^+, which was mainly transported in its absorbed state. Flow energy attenuation may also have enriched finer particles in absorbed SO_4^{2-} in the sampled runoff. The SO_4^{2-} continuously dissolved in the runoff and infiltrated into deeper soil layers; hence, the absorbed SO_4^{2-} concentrations were highly variable with distance (Fig. 3b). No clear transport features exist for absorbed chemical in the sampled runoff. Pascaud et al. (2015) found that the effect of mining contamination decreased in sediment over a distance of 8000 m. Our study scale may not be large enough; moreover, earlier deposited sediment may have affected the runoff samples.

4.3 Implications and prospects of this study

The mineral-leaching chemicals’ characteristics in rare-earth tailing heaps were discussed in this study. The results of this study indicate that leaching chemicals (NH_4^+ and SO_4^{2-}) transport characteristics as dissolved and absorbed state in runoff and sediment along the flow route during natural rainfall. Besides the leaching chemicals we found, Pb, Cd, Zn, Cu and radioactive elements also existed (Gao and Zhou, 2011). The pollutants were transported from the mining area to the surrounding soil and surface water bodies through surface runoff water. Even after mining activities stopped, the ecological environment may still suffer a series of serious problems, such as the loss of farmland by sediment deposition due to soil erosion and damaged soil because of low pH and high chemical concentration. Measures for soil erosion and soil remediation must be urgently taken within the mining area. Vegetation and mulches have been proved to effectively reduce runoff energy and trap sediment (Cao et al., 2015). Meanwhile, ditches and terracing should also be conducted to intercept runoff. Soil amendment and fertility can be applied to improve the soil quality. These practices may control the influence of leaching chemicals, rare-earth elements, and sediments on the surrounding environment. Furthermore, there are also many other factors that influence pollutant transport behavior besides transport distance, e.g., the flow energy and topography factors. In future research, field-
simulated experiments should be conducted to establish the relationship between flow hydraulic parameters and chemical transport characteristics. All of these studies may provide a scientific foundation for erosion control and soil management in rare-earth tailing regions in southern China.

5 Conclusions

Large amounts of mineral-leaching chemicals (\(\text{NH}_4^+\) and \(\text{SO}_4^{2-}\)) were still remaining in rare-earth tailings in southern China. By collecting field runoff samples during typical rainfall events in a rare-earth tailing area, this study assessed the contents of two mineral-leaching chemicals in surface sediments at different positions and provided insights regarding runoff- and sediment-related transport characteristics along the flow route. During typical rainfall events, the absorbed \(\text{NH}_4^+\) concentrations in runoff were significantly higher than the dissolved concentrations, while the absorbed \(\text{SO}_4^{2-}\) concentrations were significantly lower than the dissolved concentrations. The driving mechanism of the \(\text{NH}_4^+\) and \(\text{SO}_4^{2-}\) results in their spatial distributions in different locations. \(\text{NH}_4^+\) is mainly transported with sediment in an absorbed state, and \(\text{NH}_4^+\) content in the surface sediment samples showed an increasing trend from the top of the tailing heap to the area beyond the tailing gullies. Whereas \(\text{SO}_4^{2-}\) is mainly dissolved and transported with runoff, the \(\text{SO}_4^{2-}\) content did not show an observable trend. The dissolved \(\text{NH}_4^+\) and \(\text{SO}_4^{2-}\) concentrations in runoff showed exponentially decreasing trends with transport distance from gully outlets to the nearby water body as a result of dilution. The absorbed chemicals’ transport process may be more complex. The absorbed \(\text{NH}_4^+\) and \(\text{SO}_4^{2-}\) concentrations in runoff showed no clear trends with transport distance. Linear regressions were conducted to establish the relationship between the \(\text{NH}_4^+\) and \(\text{SO}_4^{2-}\) concentrations and the sand, silt, and clay contents. The \(\text{NH}_4^+\) and \(\text{SO}_4^{2-}\) concentrations tended to be enriched in the silt and clay particles of transported sediment. The above results will aid a better understanding of the transport characteristics of mineral-leaching chemicals during the erosion process and the development of predictive equations in rare-earth tailing areas. Our results suggest that management practices for soil remediation should be mandatory in rare-earth tailings in southern China.

Data availability. All data obtained can be accessed by e-mailing the first author (hzlu@issas.ac.cn).

The Supplement related to this article is available online at https://doi.org/10.5194/se-8-845-2017-supplement.

Author contributions. LC, HL, and YL designed the research sample methods. LC, HL, JY, YZ, YW, and YG carried them out in the field. HL, LC, and YL developed the model code and performed the simulations. HL and LC prepared the paper. QZ and YL provided constructive suggestions for the paper.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This work was supported by the ISSCAS Innovation Program (grant number ISSASIP1116), the National Natural Science Foundation of China (grant number 41571273), and the Key Technologies Research and Development Program of China (grant number 2014BAD15B03-2).

Edited by: Martine van der Ploeg
Reviewed by: two anonymous referees

References

Mol, J. H. and Ouboter, P. E.: Downstream effects of erosion from small-scale gold mining on the instream habitat and fish commu-

