Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network

Dietrich Lange1, Frederik Tilmann2,6, Tim Henstock3, Andreas Rietbrock4, Danny Natawidjaja5, and Heidrun Kopp1,7

1Dynamics of the Ocean Floor, GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
2Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany
3Ocean and Earth Science, University of Southampton European Way, Southampton, SO14 3ZJ, UK
4Karlsruhe Institute of Technology, Geophysical Institute, Karlsruhe, Germany
5RC Geotechnology, Indonesian Institute of Sciences (LIPI), Bandung, Indonesia
6Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
7Department of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Correspondence: Dietrich Lange (dlange@geomar.de)

Received: 23 November 2017 – Discussion started: 4 January 2018
Revised: 7 March 2018 – Accepted: 31 July 2018 – Published: 21 August 2018

Abstract. The Sumatran subduction zone exhibits strong seismic and tsunamogenic potential with the prominent examples of the 2004, 2005 and 2007 earthquakes. Here, we invert travel-time data of local earthquakes for v_p and v_p/v_s velocity models of the central Sumatran forearc. Data were acquired by an amphibious seismometer network consisting of 52 land stations and 10 ocean-bottom seismometers located on a segment of the Sumatran subduction zone that had not ruptured in a great earthquake since 1797 but witnessed recent ruptures to the north in 2005 (Nias earthquake, $M_w = 8.7$) and to the south in 2007 (Bengkulu earthquake, $M_w = 8.5$). The 2-D and 3-D v_p velocity anomalies reveal the downgoing slab and the sedimentary basins. Although the seismicity pattern in the study area appears to be strongly influenced by the obliquely subducting Investigator Fracture Zone to at least 200 km depth, the 3-D velocity model shows prevailing trench-parallel structures at depths of the plate interface. The tomographic model suggests a thinned crust below the basin east of the forearc islands (Nias, Pulau Batu, Siberut) at ~180 km distance to the trench. v_p velocities beneath the magmatic arc and the Sumatran fault zone (SFZ) are around 5 km s$^{-1}$ at 10 km depth and the v_p/v_s ratios in the uppermost 10 km are low, indicating the presence of felsic lithologies typical for continental crust. We find moderately elevated v_p/v_s values of 1.85 at ~150 km distance to the trench in the region of the Mentawai Fault. v_p/v_s ratios suggest an absence of large-scale alteration of the mantle wedge and might explain why the seismogenic plate interface (observed as a locked zone from geodetic data) extends below the continental forearc Moho in Sumatra. Reduced v_p velocities beneath the forearc basin covering the region between the Mentawai Islands and the Sumatra mainland possibly reflect a reduced thickness of the overriding crust.

1 Introduction

The largest earthquakes on Earth occur along subduction zones where the oceanic plate is subducted beneath an upper continental plate and large stress is accumulated during the interseismic phase of the seismic cycle. Offshore Sumatra, the oceanic Indo-Australian plate subducts obliquely beneath the Eurasian plate (Fig. 1). In the last decade, the margin hosted a number of great earthquakes on the subduction thrust (Aceh-Andaman, 26 December 2004, $M_w = 9.2$; Nias, 28 March 2005, $M_w = 8.6$; Bengkulu, 12 September 2007, $M_w = 8.5$). Additionally, major events such as the intermediate depth $M_w = 7.6$ earthquake of 30 September 2009 (e.g., McCloskey et al., 2010; Wiseman et al., 2012) and the...
shallow and slow rupture of the 25 October 2010 Mentawai tsunami earthquake \((M_w = 7.8; \) Bilek et al., 2011; Lay et al., 2011; Newman et al., 2011) were associated with significant loss of life. Yet, a part of the margin near the northern Mentawai Islands (below Siberut) remains unbroken since 1797 (Newcomb and McCann, 1987; Natawidjaja et al., 2006; Konica et al., 2008; Chlieh et al., 2008; McCloskey et al., 2010). The region is strongly coupled as inferred from GPS observations and coral data (Chlieh et al., 2008). Further to the south, geodetic records suggest that only half of the interseismic tectonic strain accumulated since the great earthquake of 1833 (Fig. 1) might have been released by the 2007 Bengkulu earthquake (Konca et al., 2008). Sieh et al. (2008) estimate the slip deficit below Siberut Island since the large ruptures of 1797 and 1833 to be \(\sim 8 \) m and a reduced slip deficit of \(\sim 5 \) m for the Batu Islands due to the lower degree of coupling in the region of the Batu Islands (Fig. 2 and Chlieh et al., 2008). Therefore, the segment is in an advanced stage of the seismic cycle, although east of Siberut Island there has been significant intra-slab seismic activity, including the \(M_w = 7.6 \) Padang earthquake on 30 September 2009 (Fig. 2) at intermediate depth (\(\sim 85 \) km), which caused significant damage in the city of Padang. Based on Coulomb stress modeling, McCloskey et al. (2010) suggest that the 2009 Padang earthquake did not significantly relax the accumulated stress on the Mentawai segment leaving the threat of a great tsunamogenic earthquake on the Mentawai patch below Siberut Island unabated (e.g., Konca et al., 2008; Sieh et al., 2008).

The down-dip limit of subduction thrust earthquakes was suggested to be a function of temperature at the plate interface and to be controlled by the transition from unstable to stable sliding along the plate interface (e.g., Tichelaar and Ruff, 1993). Hyndman et al. (1997) estimate the maximum temperature for seismic behavior to be \(350^\circ \)C, while large earthquakes may propagate with decreasing slip down to the \(450^\circ \)C isotherm. An additional limiting factor of the seismogenic zone results from the presence of hydrated minerals (serpentinite) in the forearc mantle wedge, suggesting that the down-dip limit of the seismogenic zone correlates to the upper plate Moho (Oleskevich et al., 1999). However, for the Sumatran margin the seismogenic zone is suggested to reach below the continental Moho based on gravity surveys and wide-angle refraction and local earthquake tomography (Siberut: Simoes et al., 2004; Kieckhefer et al., 1980, \(\sim 30 \) km Moho depth; Aceh basin and Simeulue: Dessa et al., 2009; Klingelhofer et al., 2010; Tilmann et al., 2010, 21–25 km Moho depth; southern Mentawai Islands: Collings et al., 2012, less than \(30 \) km Moho depth). For central Sumatra Chlieh et al. (2008) estimate the width of the seismogenic zone based on geodetic data between 20 and 50 km, with the largest width approximately alongside Siberut, and the smallest widths at the Batu Islands and between Sipora and the Pagai islands.

Previous local earthquake tomography studies were conducted in northern Sumatra focussing on the crustal structure of the region around Lake Toba (Masturyono et al., 2001; Koulakov et al., 2009, 2016; Stankiewicz et al., 2010) or on the shallow crustal structure along the Sumatran Fault (Muksin et al., 2013). Pesicek et al. (2010) imaged the deeper slab geometry including the upper mantle and transition along the Sumatra, Andaman and Burma subduction zones.
using a regional–global body wave tomography. Offshore, the tomography study of Collings et al. (2012) resolves the deeper structure beneath north and south Pagai where the 25 October 2010 tsunamogenic event occurred. Structural information is known from active seismic reflection and refraction studies for a significant number of profiles (e.g., Franke et al., 2008; Dean et al., 2010; Klingelhofer et al., 2010; Mukti et al., 2012; Shulgin et al., 2013). The Mentawai Fault (Diament et al., 1992), located between the forearc islands and the mainland, was recently imaged as a southwest dipping back-thrust (e.g., Singh et al., 2010; Wiseman et al., 2011). However, there is only limited information about the deep forearc structure and the seismogenic zone (down to depths of ~ 50 km) of the central Sumatran margin.

Offshore central Sumatra, a ~ 2500 km long NS trending topographic feature, the Investigator Fracture Zone (IFZ), is situated on the incoming Indo-Australian plate and is subducted at a rate of 57 mm yr⁻¹ below the Sumatran mainland (Fig. 1). Seismicity occurring in the prolongation of the IFZ down to depths of 200 km presumably reflects the subducting trace of the IFZ (Fauzi et al., 1996; Lange et al., 2010). At shallower depths, beneath the Batu Islands, both the forearc crust and the plate interface are characterized by enhanced seismicity levels with a number of persistent clusters. This region hosted several major events during the last century (e.g., 1935 $M_w = 7.7$ and 1984 $M_w = 7.2$; Rivera et al., 2002) but was not affected by great earthquakes in the last 220 years at least (Konca et al., 2008). Together with the decreased locking this justifies its identification as a persistent segment barrier (Natawidjaja et al., 2006).

The development of the forearc basin between the Sumatran mainland and the island of Nias was described in Matson and Moore (1992). Overall, the Sumatran margin is characterized by rapid accretion since the early Oligocene with current trench fill ages from Quaternary to Eocene ages (Moore et al., 1982). The uplift rates of Nias slope sediments is suggested to be on the order of 100–300 m my and accreted material has been uplifted by more than 800 m in the center of Nias island (Moore et al., 1980).

In order to investigate the deep structure of the central Sumatran subduction zone, a dense, temporary and amphibious (on–offshore) seismic network was installed in central Sumatra in 2008. Besides local seismicity, the main target of the seismometer network was to obtain velocity models of the complete marine and continental forearc in order to decipher down-dip and along-strike structural variations in the Sumatran subduction zone.

2 Earthquake data

For the local earthquake tomography we use data from a dense amphibious network of up to 62 stations covering the Sumatran forearc from the trench to the volcanic arc (Lange et al., 2010). The 52 land stations from SEIS-UK were installed in April 2008 between 1.8° S and 1.8° N on the mainland and on the islands of Nias, Pulau Batu, Siberut and North Pagai. Offshore, the network was complemented by 10 three-component ocean-bottom seismometers (OBSs; Minshull et al., 2004) equipped with differential pressure gauges from June 2008 to February 2009. During October 2008, 10 land stations were removed from the Sumatran mainland, leaving the remaining 42 land stations until February 2009. The land stations continuously recorded three spa-
tial components with sample rates of 50 and 100 Hz. We also include data from eight permanent stations operated by BMKG (Meteorological and Geophysical Agency of Indonesia, http://www.bmkg.go.id, last access: 16 May 2010), GE-OFON (http://geofon.gfz-potsdam.de/, last access: 29 April 2010; FDSN code 1G) and stations GSI and BKNI operated by the GEOFON network (FDSN network code GE; GEOFON Data Centre, 1993) in the analysis. Furthermore, we include five stations for strong events from a temporary deployment north of our project area (Stankiewicz et al., 2010; GEOFON network code 7A-2008; Ryberg and Haberland, 2008) and three stations from an adjacent temporary network to the south (Collings et al., 2012). Additionally, data from 46 ocean-bottom stations (OBS/H) from an active-source experiment offshore (25 May and 10 June 2008) were considered (Vermeesch et al., 2009). A summary of the stations can be found in the supplementary material of Lange et al. (2010), Table 1. The main sources of noise in the records were tree movement, rain due to the tropical environment and anthropogenic noise (e.g., traffic), affecting in particular the horizontal components. At the ocean-bottom stations, S-waves were very difficult to pick because, in addition to high noise levels, the onset of S wave arrivals was usually poorly defined due to basement conversions.

From the original dataset (Lange et al., 2010) with 1271 events and 32 4781 manually picked arrival times (20 251 P and 12 220 S-onsets), we selected events with more than nine P and four S phase picks and RMS values smaller than 1.5 s. Then, we removed all phase arrivals with residuals larger than 2 s. Because of the large number of stations and events on or near the Sumatran fault zone (SFZ) we applied a stricter selection criteria for these crustal events (depths less than ~20 km and distances of less than 35 km from the fault trace) by excluding events with less than 11 recording stations and RMS values greater than 1 s. These selection criteria were chosen to improve the numerical balance of events from different parts of the study region (slab events: 9165 onsets, SFZ events: 7686 onsets). Finally, we ignored stations with less than 15 high-quality observations. OBS/H stations with high station residuals or dubious time corrections were not included in the inversion in order to be sure that all the observed travel times are accurate. After having checked the stability of the 2-D inversions exclusively with events within the network (largest azimuthal gap between azimuthally adjacent stations, gap ≤ 180°), events with gap < 200° were included in the inversion. We carefully checked that the relaxation of the gap criterion to 200° did not produce substantially different velocity models. Figure 2 shows the ray coverage with many paths criss-crossing in the central part of the model. The final dataset consists of 655 events with 9939 P- (therefrom 2626 with the highest quality, using the quality assignment of Lange et al., 2010) and 4859 S-arrivals (626 with highest quality).

3 Local earthquake tomography

We invert 2-D and 3-D velocity models of the Sumatran subduction zone using local earthquake tomography (LET) techniques (Aki and Lee, 1976; Kissling, 1988) by applying the well-established inversion code SIMUL2000 (Thurber, 1983; Evans et al., 1994) for the simultaneous inversion of hypocentral parameters and velocity structure (v_p, v_p/v_s). The original algorithm by Thurber (1983) was subsequently modified and enhanced with new features (e.g., Eberhart-Phillips, 1986, 1993; Um and Thurber, 1987; Thurber and Eberhart-Phillips, 1999) and has been widely used for various LET studies (e.g., Graeber and Asch, 1999; DeShon and Schwartz, 2004; Haberland et al., 2009). For the inversion of the Sumatra data (located on both the Southern Hemisphere and the Northern Hemisphere) SIMUL2000 needed to be modified to operate across the Equator.

In the damped least-squares inversion, the velocity structure v_p and v_p/v_s are inverted from the observed travel times. The velocity model is represented by velocity values specified on a rectangular grid of irregularly spaced nodes. The velocity for a given point within the grid is calculated by linearly interpolating the eight neighboring grid nodes. For a fast calculation of the path integral, Thurber (1983) implemented the ray tracer based on the "Approximate Ray Tracing" technique (ART). Receiver and source are connected with different circular arcs with varying radii and inclinations. Then, the 2-D circular arcs are perturbed in three dimensions to further minimize the travel time in an iterative process (Um and Thurber, 1987). Following common practice we applied a staggered inversion scheme starting with inversions for a one-dimensional model, followed by an inversion for a two-dimensional velocity model, and finally a 3-D inversion using the 2-D model as a starting model. For each inversion, the arrival times were weighted by their assigned pick uncertainties and all events were relocated prior to each iteration.

The importance of careful selection of the minimum 1-D model was described by various authors (e.g., Kissling, 1988; Eberhart-Phillips, 1990; Kissling et al., 1994). As 1-D v_p starting model, we used the "minimum one-dimensional model" from Lange et al. (2010) (Fig. 3, green line), which was obtained from a brute force search of different one-dimensional input models using the program VELEST (Kissling et al., 1994) and active source studies (Vermeesch et al., 2009). For the inversion of the 2-D velocity model we tested different v_p starting models from an active source re-fraction study (Vermeesch et al., 2009), from the seismicity study of Lange et al. (2010) and the LET of Collings et al. (2012) (Fig. 3). Based on these different velocity models the inversion of the 2-D v_p velocity model leads to very similar results. For the inversion of the 2-D v_p/v_s model we fixed (i.e., highly damped) the v_p model and used a constant v_p/v_s ratio of 1.77 derived from Wadati diagrams as starting model.
Horizontal distances between nodes were 30 km in the trench-perpendicular direction (x axis) and, for the 3-D inversion, 50 km in the trench-parallel direction (y axis). In the vertical direction (z axis) node spacing is 10 km down to 50 km depth with one additional node at 5 km depth. Below 50 km depth, coarser node spacing is used with nodes at 70, 90, and 120 km depth to account for the decreasing ray coverage with depth. The grid is rotated relative to the trend of the north direction by 28° and centered at 0° N, 99° E. After carefully testing different spacing parameters for 2-D and 3-D inversions in all three directions, we selected the node spacing as a compromise between resolution and stability of the inversion.

Following Evans et al. (1994), one additional node is introduced at all edges of the model with a much larger distance for computational reasons. The damping value of the damped least-squares inversion was carefully determined by "trade-off" curves between model variance and data variance (Eberhart-Phillips, 1986) and is chosen such as to simultaneously minimize the model variance and data variance. This is achieved by plotting model variance versus data variance of one-step inversions with different damping values for a given model geometry. SIMUL2000 uses one damping value for all inversion steps and the model and data variance for the trade-off curve is taken from the first inversion step. We made various inversions with different damping values and found that the spatial distribution of anomalies stays similar, but with varying amplitudes of the anomalies. The final 3-D inversion yields a significant reduction of the data variance. The P-wave data variance reduction is 76% compared to the minimum 1-D velocity model. The S-wave data variance reduction is only 18% compared to a homogeneous model with \(v_p/v_s \) values of 1.77. The small degree of improvement for the 3-D velocity model relates mostly to the high noise levels on the horizontal components resulting in S onsets of low quality. We inverted 3-D velocity models for \(v_p/v_s \) ratios and conducted extensive 3-D \(v_p/v_s \) checkerboard tests, synthetic modeling and parameter tests. However, due to the low quality of S onsets, the 3-D \(v_p/v_s \) inversion was not robust and the data variance reduction was always small. Therefore we only discuss \(v_p/v_s \) ratios of the 2-D inversion.

4 Resolution and uniqueness

The method of LET tries to find a set of hypocenters and a velocity model, which jointly fit the arrival times best. Therefore, any LET code has some limitations, which include a finite number of synthetic recovery test and a partially subjective choice of parameterization (e.g., grid spacing) of the velocity model or the choice of the damping value. As discussed in the previous chapter, SIMUL2000 uses a fixed velocity grid definition and a constant damping value set according to finding a compromise between obtaining a good data fit with low model variance, as judged by a trade-off curve.

4.1 Dependency of 2-D inversion on 1-D input model

We tested the dependency of the 2-D inversion (constant values along the y axis) on the 1-D input model in order to estimate the stability of the inversion and its ability to converge. This was done by constructing (realistic) randomized \(v_p \) velocity models with increasing velocity for increasing depths. These models were used as alternative starting models and the inversion was otherwise carried out identically. We also tested alternative \(v_p \) starting models from the active source refraction study of Vermeesch et al. (2009) and the minimum 1-D \(v_p \) model of Collings et al. (2012) (Fig. 3). We then carefully checked the dependency of the 2-D inversion on the velocity models and only found a minor dependency of the 1-D input model, indicating a very stable result of the 2-D inversion, which suggests a well-defined global minimum in the solution space for the 2-D inversion. The independence of the inverted 2-D velocity model on the 1-D input models alone does not necessarily point to a better imaging capacity of the
model and might also be related to oversimplification of reality. We find this stability of the 2-D inversion for different velocity model parameterizations (lateral and depth spacing) and a wide range of 1-D \(v_p \) velocity input models. Furthermore, the following 3-D inversion only results in a modest further improvement of the fit. The trench-perpendicular velocity heterogeneity (2-D structure) is thus more important than trench-parallel heterogeneity (3-D structure).

4.2 Spread value

The spread function of the resolution matrix poses a possibility to assess the resolution of the model nodes. The spread function (e.g., Toomey and Foulger, 1989) summarizes the information contained in a single averaging vector or row of the full-resolution matrix. For a peaked resolution, i.e., low smearing, the diagonal element is much larger than the off-diagonal elements and the spread is low. The spread values (Fig. 4) show low values in the central part of the model between the SFZ and the islands with a reduced resolution in the region offshore Siberut and Nias. At depths larger than 50 km, resolution is moderate as indicated by reduced spread values to 80 km depth. Below the Wadati–Benioff zone there is basically no penetration and thus no resolution at all.

4.3 Checkerboard tests and synthetic recovery tests

Synthetic tests and checkerboard tests were carried out to evaluate the resolution of the inversion. The procedure includes forward calculation of the travel times for a synthetic velocity model and the actual source and receiver distribution. In a second step, the calculated travel times are then perturbed with Gaussian noise, with a standard deviation dependent on the pick quality, from 0.05 s for the highest-quality observations to 0.2 s for the lowest-quality observations. Finally, the perturbed travel times are introduced into the inversion.

4.3.1 2-D checkerboard tests

The 2-D checkerboard tests were conducted for \(v_p \) and \(v_p/v_s \) models (Fig. 5). We used varying block sizes in which the input models were perturbed by ±5 %. At the highest resolution (blocks with one grid point dimension, equivalent to 30 km horizontal space and 10 km vertical space in the shallow part of the model), the pattern of perturbations is restored in the central part but the maximum amplitude of the recovered anomalies was 3.7 %, i.e., only about 75 % of the input anomalies. The checkerboard tests with \(2 \times 2 \) blocks (60 × 20 km) and lower resolution restore both the pattern and the amplitudes in the central part of the model and beneath the SFZ.

4.3.2 3-D checkerboard test

For the 3-D case we performed numerous checkerboard inversions using different checkerboard sizes. The checkerboard anomaly with 8 nodes (\(2 \times 2 \times 2 \) checkerboard, equivalent to 60 × 100 × 20 km) is reconstructed in the central part at depths between 5 and 50 km (Fig. 6). Below 50 km only the region beneath the volcanic arc shows sufficient ray coverage, but the profile view suggests vertical smearing below 50 km depth. In general, the resolution is good between the forearc islands and the SFZ between 5 and 50 km for the region above the Wadati–Benioff zone, so we will restrict our interpretation to this depth range. The shallow (< 30 km) region beneath the eastern part of Siberut is characterized by aseismic behavior during the deployment and the limited ray coverage results in insufficient recovery of the checkerboard in this region. A threshold for the spread values has been chosen to discriminate regions with high and low resolution and is superimposed on the resulting tomographic velocity models. The choice of threshold was carefully determined based on checkerboard tests, the ray coverage, and on the relative amplitudes of the spread values.

4.4 3-D synthetic restoration test

Restoring resolution tests were conducted to estimate the capacity of the data to resolve the geometry and amplitudes of potential velocity structures. We constructed synthetic \(v_p \) velocity models with similar characteristics in amplitude and dimensions as the inversion results and further models with velocity anomalies representing the subducted IFZ. A possibly modified crust along the IFZ was incorpo-
Figure 5. 2-D synthetic checkerboard models with 5% velocity perturbation input anomalies (a, d, g), the inversion restoration for v_p (b, e, h) and v_p/v_s (c, f, i) models. Crosses represent nodes used in the inversion and the reconstructions are plotted with the resulting hypocenter locations (black points). We calculated different checkerboard inversions using 1×1 and 2×2 (shown in the rows from top to bottom) grid node model perturbations. Noise was added to the synthetic data depending on the quality of the arrivals.

5 Results and discussion

The 2-D v_p and v_p/v_s velocity model is shown in Fig. 8, and the final 3-D v_p velocity model is shown in Figs. 9 and 10. In the following, we discuss the main features for the different tectonic units, making use of the lower-case labels in Figs. 9 and 10.

5.1 Accretionary prism, forearc islands and forearc basin

In the shallow part of the v_p velocity model we observe regions of reduced v_p velocities alternating with higher v_p values at shallow depths (Fig. 8, ~10 km depth and Fig. 10, a, b and c). In the following, we discuss these regimes starting at the trench and moving towards the mainland of Sumatra. The accretionary wedge composes the frontal prism adjacent to the deep-sea trench as well as the lower to middle continental slope seaward of the forearc islands. The accretionary domain (labeled a in Figs. 9 and 10) is characterized by moderate velocities of $\sim 5 \text{ km s}^{-1}$ down to a depth of ~ 15 km, increasing to $\sim 6 \text{ km s}^{-1}$ above the landward-dipping high-velocity zone (labeled f, Fig. 10). Velocities in the upper 15 km increase underneath the forearc islands (labeled b) with values of $\sim 6 \text{ km s}^{-1}$, which are also observed beneath the coast. The forearc basin between the islands and the mainland (labeled c) shows moderately low velocities of $\sim 5 \text{ km s}^{-1}$ down to 10 km depth. When considering the shallow forearc structure (<15 km), the trench-perpendicular shallow structure variations are similar to the results of Collings et al. (2012) for the southern Mentawai Islands, in a way that the slow and fast domains alternate in the landward direction. The most obvious difference is that Collings et al. (2012) found low velocity values of approximately 5 km s^{-1} beneath the Mentawai forearc islands (Sipora, North Pagai and South Pagai), adjacent to faster material beneath the forearc basin. Our results image the region beneath the forearc islands as a trench-parallel (labeled b, Figs. 10 and 11), elongated zone of increased velocities, sandwiched between the relatively lower velocities of the trenchward accretionary prism (labeled a, Figs. 10 and 11) and the landward forearc basin (labeled c) the fast velocity anomalies below and between the islands might be inter-
interpreted as occurrence of faster accreted IFZ material beneath the Batu Islands. On geological timescales the intersection of the IFZ with the marine forearc migrates southeast as the subducted plate descends, and thus might have created margin-parallel accreted features north of the current intersection of the IFZ with the trench (e.g., north of Siberut island). However, we cannot find significant along-strike variations in v_p between the Mentawai Islands and the trench (e.g., labeled a in Figs. 10 and 11), which might equally be explained by accretion of seamounts (Fig. 1; 4.5$^\circ$ S, 99.5$^\circ$ E).

The very shallow marine forearc at depths of 5 km is characterized by three regions of relatively reduced v_p velocities of between 5 and 6 km s$^{-1}$. Faster regions (\sim 6 km s$^{-1}$) are spatially related to the forearc islands Nias, Pulau Batu, Siberut, and Pulau Pini (Fig. 9b). In-between the forearc islands the marine forearc is mostly characterized by v_p velocities of 5 km s$^{-1}$.

At depths of 20–30 km and 25 km east of the Mentawai Fault, a trench-parallel velocity anomaly of higher v_p velocities (labeled d in Figs. 9 and 10, indicative by the up-welling of contour lines) suggests a shallower location of the Moho beneath the forearc basin and hence a reduced thickness of the overriding crust. Alternatively, this velocity anomaly might reflect a deep subducted seamount. Based on reflection data Singh et al. (2011) image an undulation of the top of the subducting slab in the Sumatran forearc to the south at 5$^\circ$ S and interpreted this as a subducted seamount. We exclude the possibility of a subducted seamount due to the size of the anomaly (200 km × 80 km) and the absence of a similar feature in the seismicity (Fig. 1). Alternatively, this trench-parallel velocity anomaly of higher v_p velocities (labeled d) might be explained by an accreted mafic block.

5.2 Sumatran fault zone (SFZ) and volcanic arc

While the offshore forearc is made up of young sediments from the Eocene to Holocene, the mainland shows a \sim 130 km wide belt of different rock units along the SFZ. The SFZ is characterized by high seismicity rates (e.g., Weller et al., 2012) due to stress and strain partitioning from the oblique subduction (McCaffrey et al., 2000). This belt is
mostly composed of Permian to Jurassic sedimentary rocks, Eocene volcanic rocks and Jurassic to Eocene intrusive units (Crow and Barber, 2005). The 3-D velocity model along the SFZ is characterized by only minor changes in \(v_p \) along strike. Seismic velocities of 7.8 km s\(^{-1} \) (indicative of continental Moho) are reached at depths larger than 30 km and outside the region of good resolution. A Moho depth between 28 and 40 km is inline with Moho depths from receiver functions in the region of the caldera of Lake Toba (Fig. 1; Sakaguchi et al., 2006; Kieling et al., 2011) and similar to the Moho depths inferred from receiver functions (Gunawan et al., 2011).

\(v_p/v_s \) values beneath the SFZ (depths ≤ 20 km) are between 1.65 and 1.72 (Fig. 8) and similar to the minimum 1-D velocity model of Weller et al. (2012), which used the same stations to derive an optimum 1-D model for the SFZ region only. These low \(v_p/v_s \) ratios seem to be characteristic for the shallow crust in the region of the SFZ. Muksin et al. (2013) conducted a LET for the shallow crust (<15 km) at 2° N and found similar lower \(v_p/v_s \) values away from the SFZ. Equally, Koukakov et al. (2009) imaged predominantly lower \(v_p/v_s \) ratios below 1.8 for the region 100 km northwest of our study area (labeled Tb in Fig. 1). Our findings differ from the velocity model of Koukakov et al. (2009, 2016), in that we find only weak indications of a patchy low-velocity zone beneath the magmatic arc at 30 km depth only.

5.3 Subducting oceanic lithosphere

Where the slab is still in contact with the overriding plate, the oceanic Moho is imaged as the inclined 7.8 km s\(^{-1} \) \(v_p \) contour line (Figs. 8c and 10f). The plate interface, inferred from seismicity, is located at approximately 25 km depth below the forearc islands (Fig. 8), a little deeper than beneath the Pagai Islands at 3° S, where it was found at 20 km depth (Collings et al., 2012), but significantly deeper than the plate interface from seismicity and refraction seismicity found at 15 km depth beneath Simeulue Island at 2.5° N (Tilmann et al., 2010; Shulgin et al., 2013).

Seismicity 25 km west of Nias (Fig. 2) is part of a coast-parallel band of seismicity. This band of high seismicity corresponds to the transition between regions of significant coseismic (down-dip) and aseismic slip (up-dip) of the 2005 earthquake (Hsu et al., 2006) and extends northwards until Simeulue Island, roughly following the 500 m isobath contour lines (Tilmann et al., 2010). The depth variations in seismicity along this seismicity band suggest that the seismicity transition from aseismic to seismic behavior in the down-dip direction (Lange et al., 2007, 2010; Tilmann et al., 2010; Shulgin et al., 2013).
thetic restoration tests (Fig. 7) document that the inversion is (i.e., to top right in the figure) from Pulau Batu. The syn-
in Fig. 9f it is visible as a band of seismicity striking north
∼ the trace of the subducted IFZ is reflected by seismicity down
ular, the velocity model does not reveal indications of veloc-
strike change can be identified in the mantle wedge. In partic-
landward of the forearc islands (except Pulau Pini, which is
panel is the contrast between crust and mantle, allowing us
models (profile direction is trench perpendicular). Regions with
good resolution are encircled with a red line. Circles indicate
hypocenters and grid nodes are shown with crosses. Stations are
indicated with triangles. The dashed line in panel (a) indicates the
vp 7.8 km s−1 contour line and is used as a proxy for the Moho.

Figure 8. 2-D tomographic velocity models for vp (a) and vp/vs (b)
models (profile direction is trench perpendicular). Regions with
good resolution are encircled with a red line. Circles indicate
hypocenters and grid nodes are shown with crosses. Stations are
indicated with triangles. The dashed line in panel (a) indicates the
vp 7.8 km s−1 contour line and is used as a proxy for the Moho.

2010) might not be controlled by depth and hence lithostatic
pressure.
The inclination of the subducting plate is approximately
25° within the depth range between 40 and 80 km, also based
the seismicity, as the resolution and grid spacing is insuf-
sufficient for imaging subducting oceanic crust. There are hints
of the contrast between the subducting high-velocity slab and
the mantle wedge in the form of a dipping velocity contour
(e.g., Fig 10d), but it is only imaged in a patchy way at the
limit of the resolved area. At larger depths, seismicity can be
traced down to 220 km with an inclination of approximately
36° (Lange et al., 2010) but the velocity structure is no longer
resolved (Fig. 9e).

Figure 9f shows a section through the 3-D vp velocity
model following the plate interface (defined by the SLAB1.0
model; Hayes et al., 2012). The dominant feature in this
panel is the contrast between crust and mantle, allowing us
to identify the position of the toe of the mantle wedge just
landward of the forearc islands (except Pulau Pini, which is
already well above the mantle wedge). No obvious along-
strike change can be identified in the mantle wedge. In partic-
ular, the velocity model does not reveal indications of veloc-
ity anomalies in the direction of the subducted IFZ, although
the trace of the subducted IFZ is reflected by seismicity down to
∼ 200 km depths (Fauzi et al., 1996; Lange et al., 2010);
in Fig. 9f it is visible as a band of seismicity striking north
(i.e., to top right in the figure) from Pulau Batu. The syn-
thetic restoration tests (Fig. 7) document that the inversion is
capable to resolve a ∼ 40 km wide velocity anomaly, if there
would be any. Considering such large-scale structures, we
conclude that the subducted IFZ did not disturb the velocity
structure at depths of the plate interface, e.g., by releasing flu-
ids and enhancing melt production. However, the IFZ clearly
had a significant impact on the rheological conditions within
the slab since it enhances intermediate depth seismicity down
to large depths (Lange et al., 2010). Some of the events, la-
bled with f in Fig. 10, panel (c) are located 10–15 km below
the plate interface defined by the global slab model (Hayes
et al., 2012). Based on their hypocentral depths we interpret
them as being spatially related to the oceanic crust to man-
tle transition (e.g., near the oceanic Moho) or even possibly
occuring in the uppermost oceanic mantle. For the North
Chilean subduction zone, Bloch et al. (2014) found a simi-
lar group of events ∼ 8 km below the plate interface for the
North Chilean subduction zone and at depths between 30
and 60 km and proposed them to be spatially related to the
oceanic Moho.

5.4 vp/vs model of the forearc

As discussed in Sect. 2 S onsets are of lower quality due to
tropical conditions and anthropogenic noise. Therefore, we
only present the 2-D vp/vs inversion results (Fig. 8b). In our
study region around Nias and Siberut, we only find mostly
moderately elevated vp/vs values (up to 1.85, Fig. 8b), whereas Collings et al., 2012 find strongly elevated vp/vs values (up to 2.0) down to the plate interface below the Pa-
gai Islands. The largest values are found west of the fore-
arc basins in the region of the Mentawai Fault just landward
of the forearc islands. Since rays of the 2-D vp/vs velocity
model mostly sample the region northeast of Pulau Batu
(Fig. 2) this likely reflects a local vp/vs anomaly close to the
Equator rather than being a feature present along the
whole along-strike length of the study region. The reason
for this region of elevated vp/vs remains enigmatic. Possi-
ble explanations include fluids related to pathways created by
the Mentawai Fault or structural differences due to subducted
material from the IFZ. Although vp/vs ratios are moderately
elevated (up to 1.85) we cannot identify large-scale alteration
of the mantle wedge due to surplus liquids from a strongly
hydrated IFZ because serpentinized material is characterized
by clearly elevated vp/vs and reduced vs values (e.g., Carl-
son and Miller, 2003). Because mantle serpentinization fa-
vors aseismic sliding and is related to the down-dip extent of the
seismogenic zone (e.g., Hyndman et al., 1997; Oleske-
vich et al., 1999), the lack of large-scale serpentinization could
explain why the seismogenic plate interface extends
into the forearc mantle off Sumatra (e.g., Simoes et al., 2004;
Collings et al., 2012). In particular, the stalling of the 2005
rupture was suggested to be limited by the subducted IFZ and
reduced coupling of the plate interface (Fig. 2 and Chlieh
et al., 2008) and might be related to rheological properties
and heterogeneities along the plate interface. Based on multi-
Figure 9. The 3-D v_p model: depth sections (a–e) and curved section along the plate interface as defined by the global SLAB1.0 model (Hayes et al., 2012) (f). Red lines encircle regions of good resolution defined by a cut-off spread value of 1.5. White circles indicate events within 10 km of the section depth, except (f), where all events used for the inversion are shown. Volcanoes (Smithsonian Institute) shown with red triangles. The Mentawai Fault (blue line offshore) and the Sumatran Fault (red line onshore) are also shown. See text for explanation of characters. Other symbols as in Fig. 6.

Channel seismic data, Henstock et al. (2016) identified an isolated 3 km basement high close to the 2005 slip termination as well as along-strike variations of basement relief. Such features are large enough to affect the rheological behavior of the plate interface such as coupling but are below the resolution of our LET.

Figure 10. Cross sections along trench-perpendicular trending profiles through the 3-D v_p model. See Fig. 9a for location of cross sections. White circles indicate events within 10 km of the profile and stations closer than 25 km to the profile are shown by white triangles, the remaining ones by black triangles. The 46 OBS stations of the 2-week deployment are shown with smaller triangles. Grid nodes are shown with crosses. Red lines encircle regions of good resolution defined by a cut-off spread value of 1.5. Green line in panel (c) indicates the plate interface as defined by the global SLAB1.0 model (Hayes et al., 2012). The 7.8 km s$^{-1}$ v_p contour line is indicated by a black line. See text for explanation of characters. Other symbols as in Fig. 6. Note that the geographic labels at the top refer to all profiles, but that only profiles C (Batu Islands) and E (Siberut) actually cross a forearc island.
6 Conclusions

We present 2-D and 3-D velocity models from a local earthquake tomography (LET) using data from a dense network of seismic stations covering the onshore and offshore domain of the northern Sumatran forearc close to the Equator. The models resolve the structure of the forearc including the accretionary prism, forearc islands, the forearc basin, the mantle wedge and the volcanic arc down to a maximum depth of ~60 km. The down-going slab is traced by inclined velocity contour lines at depths <40 km. The oceanic crust has a velocity of ~7 km s\(^{-1}\) and is located at a depth of ~25 km beneath the forearc islands (based on the seismicity depth distribution). \(v_p\) velocities beneath the magmatic arc, which spatially coincides with the SFZ, are around 5 km s\(^{-1}\) at 10 km depth and the \(v_p/v_s\) ratios in the uppermost 10 km are low, indicating the presence of felsic lithologies typical for continental crust.

The forearc basins west and east of the Mentawai Islands are characterized by velocities of ~5 km s\(^{-1}\) down to 15 km depth. Although the region is characterized by the subducted IFZ, which influences seismicity down to depths of 200 km, the 3-D velocity model at depths of the plate interface shows prevailing trench-parallel structures suggesting that the subducted IFZ did not significantly modify the velocity structure at seismogenic depths. At very shallow depths (~5 km) and below the forearc islands (Pulau Batu, Siberut, Nias) higher \(v_p\) velocities of ~6 km s\(^{-1}\) are found.

At depths of 20–30 km and ~25 km east of the Mentawai Fault, a trench-parallel velocity anomaly of higher \(v_p\) velocities might suggest a shallower location of the Moho beneath the forearc basin and hence a reduced thickness of the overriding crust.

Elevated \(v_p/v_s\) ratios of 1.85 are found in the overriding crust in the region of the Mentawai Fault, which might be related to fluids. However, \(v_p/v_s\) ratios are still too small to support a large-scale serpentinization of the continental mantle and could explain why the seismogenic plate interface (observed as a locked zone from geodetic data) extends below the continental forearc Moho in Sumatra.

Acknowledgements. We thank the SeisUK facility in Leicester for the loan of the instruments and the logistic support during this project, loan 828 (Brisbourne, 2012). We acknowledge the support of the colleagues at Geoteknologi LIPI for this project. LIPI-EOS let us share some of the sites of the SuGaR GPS network. We thank the captain and crew of the vessel Andalas for excellent work in the field. Furthermore, we thank the master and crew of RV SONNE cruises SO-198 and SO-200 for the deployment and recovery of the OBS. OBS instruments were provided by OBIF. We thank Lisa C. McNeill and Penny Barton who participated in the acquisition of the OBS data. The project was funded by NERC (NE/D00359/1). EOS (Earth Observatory of Singapore) is thanked for supporting logistical costs of deployment on Mentawai and Batu Islands. We thank the Indonesian BMKG and German GEOFON for the station data from their permanent networks. Furthermore, we are indebted to all field crews for their excellent work under tropical conditions. We thank Imam Suprihanto, Bambang Suwargadi and Rachel Collings for support during the fieldwork. Finally, we gratefully acknowledge the cooperation of many Sumatran landowners, communities, and institutions for support and for allowing us to install the seismic stations on their property. Our special thanks go to Sylvain Barbot, Ivan Koulakov and an anonymous reviewer for their constructive comments and suggestions.

Edited by: Tarje Nissen-Meyer
Reviewed by: Ivan Koulakov and one anonymous referee

References

Data availability. Seis-UK data are available from IRIS (https://www.iris.edu) using the network code ZB (2007–2009) (Lange et al., 2010). The GEOFON data with network codes GE and 7A (2008) (GEOFON Data Centre, 1993) are stored at the GEOFON data centre (https://geofon.gfz-potsdam.de/). GFZ instruments were provided by the Geophysical Instrument Pool Potsdam (GIPP). The data from the permanent Indonesian network (network code IA) are stored at BMKG (http://www.bmkg.go.id, last access: 16 May 2010).

Author contributions. DL, FT, TH, AR and DH were involved in the installation of the seismological stations. FT, TH, AR and DH designed the experiment. AR and DH supervised the project. DL processed the data, conducted the inversions and prepared the artwork. DL led the development of the manuscript supported by significant contributions from FT, TH and HK who contributed to the ideas, concepts and interpretation presented in this manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Ryberg, T. and Haberland, C.: Lake Toba seismic network, Sumatra, Indonesia. Deutsches GeoForschungsZentrum GFZ,