Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.380 IF 2.380
  • IF 5-year value: 3.147 IF 5-year
    3.147
  • CiteScore value: 3.06 CiteScore
    3.06
  • SNIP value: 1.335 SNIP 1.335
  • IPP value: 2.81 IPP 2.81
  • SJR value: 0.779 SJR 0.779
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 32 Scimago H
    index 32
  • h5-index value: 31 h5-index 31
Volume 9, issue 5
Solid Earth, 9, 1061–1078, 2018
https://doi.org/10.5194/se-9-1061-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Solid Earth, 9, 1061–1078, 2018
https://doi.org/10.5194/se-9-1061-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 10 Sep 2018

Research article | 10 Sep 2018

Channel flow, tectonic overpressure, and exhumation of high-pressure rocks in the Greater Himalayas

Fernando O. Marques1, Nibir Mandal2, Subhajit Ghosh3, Giorgio Ranalli4, and Santanu Bose3 Fernando O. Marques et al.
  • 1Departamento de Geologia, Universidade de Lisboa, Lisbon, Portugal
  • 2Department of Geological Sciences, Jadavpur University, Kolkata, India
  • 3Department of Geology, University of Calcutta, Kolkata, India
  • 4Department of Earth Sciences, Carleton University, Ottawa, Canada

Abstract. The Himalayas are the archetype of continental collision, where a number of long-standing fundamental problems persist in the Greater Himalayan Sequence (GHS): (1) contemporaneous reverse and normal faulting, (2) inversion of metamorphic grade, (3) origin of high- (HP) and ultrahigh-pressure (UHP) rocks, (4) mode of ductile extrusion and exhumation of HP and UHP rocks close to the GHS hanging wall, (5) flow kinematics in the subduction channel, and (6) tectonic overpressure, here defined as TOP  = PPL where P is total (dynamic) pressure and PL is lithostatic pressure. In this study we couple Himalayan geodynamics to numerical simulations to show how one single model, upward-tapering channel (UTC) flow, can be used to find a unified explanation for the evidence. The UTC simulates a flat-ramp geometry of the main underthrust faults, as proposed for many sections across the Himalayan continental subduction. Based on the current knowledge of the Himalayan subduction channel geometry and geological/geophysical data, the simulations predict that a UTC can be responsible for high TOP ( > 2). TOP increases exponentially with a decrease in UTC mouth width, and with an increase in underthrusting velocity and channel viscosity. The highest overpressure occurs at depths  < −60 km, which, combined with the flow configuration in the UTC, forces HP and UHP rocks to exhume along the channel's hanging wall, as in the Himalayas. By matching the computed velocities and pressures with geological data, we constrain the GHS viscosity to be  ≤ 1021 Pa s, and the effective convergence (transpression) to a value  ≤ 10 %. Variations in channel dip over time may promote or inhibit exhumation (> or < 15°, respectively). Viscous deformable walls do not affect overpressure significantly enough for a viscosity contrast (viscosity walls to viscosity channel) of the order of 1000 or 100. TOP in a UTC, however, is only possible if the condition at the bottom boundary is no-outlet pressure; otherwise it behaves as a leaking boundary that cannot retain dynamic pressure. However, the cold, thick, and strong lithospheres forming the Indian and Eurasian plates are a good argument against a leaking bottom boundary in a flat-ramp geometry, and therefore it is possible for overpressure to reach high values in the GHS.

Publications Copernicus
Download
Short summary
We couple Himalayan tectonics to numerical simulations to show how upward-tapering channel (UTC) flow can be used to explain the evidence. The simulations predict high tectonic overpressure (TOP > 2), which increases exponentially with a decrease in UTC mouth width, and with increase in velocity and channel viscosity. The highest TOP occurs at depths < −60 km, which, combined with the flow in the UTC, forces high-pressure rocks to exhume along the channel’s hanging wall, as in the Himalayas.
We couple Himalayan tectonics to numerical simulations to show how upward-tapering channel (UTC)...
Citation