Journal metrics

Journal metrics

  • IF value: 4.165 IF 4.165
  • IF 5-year value: 4.075 IF 5-year 4.075
  • CiteScore value: 4.28 CiteScore 4.28
  • SNIP value: 1.501 SNIP 1.501
  • SJR value: 1.060 SJR 1.060
  • IPP value: 4.21 IPP 4.21
  • h5-index value: 29 h5-index 29
  • Scimago H index value: 27 Scimago H index 27
Volume 9, issue 6
Solid Earth, 9, 1329-1339, 2018
https://doi.org/10.5194/se-9-1329-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Solid Earth, 9, 1329-1339, 2018
https://doi.org/10.5194/se-9-1329-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Nov 2018

Research article | 19 Nov 2018

Stability of soil organic matter in Cryosols of the maritime Antarctic: insights from 13C NMR and electron spin resonance spectroscopy

Evgeny Abakumov1 and Ivan Alekseev1,2 Evgeny Abakumov and Ivan Alekseev
  • 1Department of Applied Ecology, Saint-Petersburg State University, 199178, 16-line 2, Vasilyevskiy Island, Russia
  • 2Otto Schmidt Laboratory for Polar and Marine Research, Arctic and Antarctic Research Institute, 199397, Beringa str. 38, Russia

Abstract. Previously, the structure and molecular composition of the Antarctic soil organic matter (SOM) has been investigated using 13C-NMR methods, which showed that in typical organo-mineral soils the aliphatic carbon prevails over the aromatic one, owing to the non-ligniferous nature of its precursor material. In this study, the SOM was analysed from different sample areas (surface level and partially isolated supra-permafrost layer) of the tundra-barren landscape of the Fildes Peninsula, King George Island, Western Antarctica. We found that the humic acids (HAs) of the cryoturbated, buried areas had lower amounts of alkyl aromatic and protonized aromatic compounds. In contrast, the HAs from the surface layers contain less alkyl carbon components. The free-radical content was higher in the surface layers than in the buried layers due to the presence of fresh organic remnants in superficial soil samples. New data on SOM quality from these two representative Cryosols will enable a more precise assessment of SOM stabilization rate in sub-Antarctic tundras. Comparison of the 13C-NMR spectra of the HAs and the bulk SOM revealed that humification occurs in the Antarctic and results in accumulation of aromatic and carboxylic compounds and reductions in alkylic ones. This indicates that humification is one of the ways of soil organic matter stabilization.

Publications Copernicus
Download
Citation
Share