Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.380 IF 2.380
  • IF 5-year value: 3.147 IF 5-year
    3.147
  • CiteScore value: 3.06 CiteScore
    3.06
  • SNIP value: 1.335 SNIP 1.335
  • IPP value: 2.81 IPP 2.81
  • SJR value: 0.779 SJR 0.779
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 32 Scimago H
    index 32
  • h5-index value: 31 h5-index 31
Volume 9, issue 2
Solid Earth, 9, 531–571, 2018
https://doi.org/10.5194/se-9-531-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Two centuries of modelling across scales (SE/ESurf inter-journal...

Solid Earth, 9, 531–571, 2018
https://doi.org/10.5194/se-9-531-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Apr 2018

Research article | 27 Apr 2018

A review of laboratory and numerical modelling in volcanology

Janine L. Kavanagh1, Samantha L. Engwell2, and Simon A. Martin1 Janine L. Kavanagh et al.
  • 1Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool L69 3GP, UK
  • 2British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK

Abstract. Modelling has been used in the study of volcanic systems for more than 100 years, building upon the approach first applied by Sir James Hall in 1815. Informed by observations of volcanological phenomena in nature, including eye-witness accounts of eruptions, geophysical or geodetic monitoring of active volcanoes, and geological analysis of ancient deposits, laboratory and numerical models have been used to describe and quantify volcanic and magmatic processes that span orders of magnitudes of time and space. We review the use of laboratory and numerical modelling in volcanological research, focussing on sub-surface and eruptive processes including the accretion and evolution of magma chambers, the propagation of sheet intrusions, the development of volcanic flows (lava flows, pyroclastic density currents, and lahars), volcanic plume formation, and ash dispersal.

When first introduced into volcanology, laboratory experiments and numerical simulations marked a transition in approach from broadly qualitative to increasingly quantitative research. These methods are now widely used in volcanology to describe the physical and chemical behaviours that govern volcanic and magmatic systems. Creating simplified models of highly dynamical systems enables volcanologists to simulate and potentially predict the nature and impact of future eruptions. These tools have provided significant insights into many aspects of the volcanic plumbing system and eruptive processes. The largest scientific advances in volcanology have come from a multidisciplinary approach, applying developments in diverse fields such as engineering and computer science to study magmatic and volcanic phenomena. A global effort in the integration of laboratory and numerical volcano modelling is now required to tackle key problems in volcanology and points towards the importance of benchmarking exercises and the need for protocols to be developed so that models are routinely tested against real world data.

Publications Copernicus
Download
Short summary
Modelling has been used in the study of volcanic systems for more than 100 years, building upon the approach first described by Sir James Hall in 1815. Models are informed by observations of volcanic processes in nature, including eye-witness accounts of eruptions, monitoring of active volcanoes, and analysis of ancient deposits. To push the frontiers in volcanology we must adopt a multidisciplinary approach, with more interaction between analogue and numerical modelling communities.
Modelling has been used in the study of volcanic systems for more than 100 years, building upon...
Citation