Journal metrics

Journal metrics

  • IF value: 4.165 IF 4.165
  • IF 5-year value: 4.075 IF 5-year 4.075
  • CiteScore value: 4.28 CiteScore 4.28
  • SNIP value: 1.501 SNIP 1.501
  • SJR value: 1.060 SJR 1.060
  • IPP value: 4.21 IPP 4.21
  • h5-index value: 29 h5-index 29
  • Scimago H index value: 27 Scimago H index 27
Solid Earth, 9, 699-711, 2018
https://doi.org/10.5194/se-9-699-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
30 May 2018
Squirt flow due to interfacial water films in hydrate bearing sediments
Kathleen Sell1,2, Beatriz Quintal3, Michael Kersten1, and Erik H. Saenger4,5 1Institute of Geosciences, Johannes Gutenberg-University Mainz, Mainz, Germany
2Institute for Geothermal Resource Management, Bingen, Germany
3Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
4International Geothermal Centre, Bochum University of Applied Sciences, Bochum, Germany
5Institute of Geology, Mineralogy and Geophysics, Ruhr University Bochum, Bochum, Germany
Abstract. Sediments containing gas hydrate dispersed in the pore space are known to show a characteristic seismic anomaly which is a high attenuation along with increasing seismic velocities. Currently, this observation cannot be fully explained albeit squirt-flow type mechanisms on the microscale have been speculated to be the cause. Recent major findings from in situ experiments, using the gas in excess and water in excess formation method, and coupled with high-resolution synchrotron-based X-ray micro-tomography, have revealed the systematic presence of thin water films between the quartz grains and the encrusting hydrate. The data obtained from these experiments underwent an image processing procedure to quantify the thicknesses and geometries of the aforementioned interfacial water films. Overall, the water films vary from sub-micrometer to a few micrometers in thickness. In addition, some of the water films interconnect through water bridges. This geometrical analysis is used to propose a new conceptual squirt flow model for hydrate bearing sediments. A series of numerical simulations is performed considering variations of the proposed model to study seismic attenuation caused by such thin water films. Our results support previous speculation that squirt flow can explain high attenuation at seismic frequencies in hydrate bearing sediments, but based on a conceptual squirt flow model which is geometrically different than those previously considered.
Citation: Sell, K., Quintal, B., Kersten, M., and Saenger, E. H.: Squirt flow due to interfacial water films in hydrate bearing sediments, Solid Earth, 9, 699-711, https://doi.org/10.5194/se-9-699-2018, 2018.
Publications Copernicus
Download
Short summary
Sediments containing hydrates dispersed in the pore space show a characteristic seismic anomaly: a high attenuation along with increasing seismic velocities. Recent major findings from synchrotron experiments revealed the systematic presence of thin water films between quartz and gas hydrate. Our numerical studies support earlier speculation that squirt flow causes high attenuation at seismic frequencies but are based on a conceptual model different to those previously considered.
Sediments containing hydrates dispersed in the pore space show a characteristic seismic anomaly:...
Share