Articles | Volume 10, issue 1
https://doi.org/10.5194/se-10-27-2019
https://doi.org/10.5194/se-10-27-2019
Research article
 | 
11 Jan 2019
Research article |  | 11 Jan 2019

A semi-automated algorithm to quantify scarp morphology (SPARTA): application to normal faults in southern Malawi

Michael Hodge, Juliet Biggs, Åke Fagereng, Austin Elliott, Hassan Mdala, and Felix Mphepo

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Michael Hodge on behalf of the Authors (18 Oct 2018)  Manuscript 
ED: Referee Nomination & Report Request started (22 Oct 2018) by Federico Rossetti
RR by Laura Gregory (12 Nov 2018)
ED: Publish subject to technical corrections (04 Dec 2018) by Federico Rossetti
ED: Publish subject to technical corrections (04 Dec 2018) by Federico Rossetti (Executive editor)
AR by Michael Hodge on behalf of the Authors (05 Dec 2018)  Manuscript 
Download
Short summary
This work attempts to create a semi-automated algorithm (called SPARTA) to calculate height, width and slope of surface breaks produced by earthquakes on faults. We developed the Python algorithm using synthetic catalogues, which can include noise features such as vegetation, hills and ditches, which mimic natural environments. We then apply the algorithm to four fault scarps in southern Malawi, at the southern end of the East African Rift system, to understand their earthquake potential.