Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.380 IF 2.380
  • IF 5-year value: 3.147 IF 5-year
    3.147
  • CiteScore value: 3.06 CiteScore
    3.06
  • SNIP value: 1.335 SNIP 1.335
  • IPP value: 2.81 IPP 2.81
  • SJR value: 0.779 SJR 0.779
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 32 Scimago H
    index 32
  • h5-index value: 31 h5-index 31
Volume 4, issue 2
Solid Earth, 4, 451-459, 2013
https://doi.org/10.5194/se-4-451-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Soil processes in cold-climate environments

Solid Earth, 4, 451-459, 2013
https://doi.org/10.5194/se-4-451-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 20 Nov 2013

Research article | 20 Nov 2013

Paleosols in the Transantarctic Mountains: indicators of environmental change

J. G. Bockheim J. G. Bockheim
  • Department of Soil Science, University of Wisconsin, Madison, WI 53706-1299, USA

Abstract. The Transantarctic Mountains (TAMs), a 3500 km long chain that subdivides East Antarctica from West Antarctica, are important for reconstructing the tectonic, glacial, and climatic history of Antarctica. With an ice-free area of 24 200 km2 (50% of the total in Antarctica), the TAMs contain an unusually high proportion of paleosols, including relict and buried soils. The unconsolidated paleosols range from late Quaternary to Miocene in age, the semi-consolidated paleosols are of early Miocene to Oligocene age, and the consolidated paleosols are of Paleozoic age. Paleosols on unconsolidated deposits are emphasized in this study. Examples are given from the McMurdo Dry Valleys (78° S) and two outlet glaciers in the central and southern TAMS, including the Hatherton–Darwin Glacier region (80° S) and the Beardmore Glacier region (85°30' S). Relict soils constitute 73% of all of the soils examined; 10% of the soils featured burials. About 26% of the soils examined are from the last glaciation (< 117 ka) and have not undergone any apparent change in climate. As an example, paleosols comprise 65% of a mapped portion of central Wright Valley. Paleosols in the TAMs feature recycled ventifacts and buried glacial ice in excess of 8 Ma in age, and volcanic ash of Pliocene to Miocene age has buried some soils. Relict soils are more strongly developed than nearby modern soils and often are dry-frozen and feature sand-wedge casts when ice-cemented permafrost is present. The preservation of paleosols in the TAMs can be attributed to cold-based glaciers that are able to override landscapes while causing minimal disturbance.

Publications Copernicus
Special issue
Download
Citation
Share