Journal metrics

Journal metrics

  • IF value: 4.165 IF 4.165
  • IF 5-year value: 4.075 IF 5-year 4.075
  • CiteScore value: 4.28 CiteScore 4.28
  • SNIP value: 1.501 SNIP 1.501
  • SJR value: 1.060 SJR 1.060
  • IPP value: 4.21 IPP 4.21
  • h5-index value: 29 h5-index 29
  • Scimago H index value: 27 Scimago H index 27
Solid Earth, 6, 1237-1246, 2015
https://doi.org/10.5194/se-6-1237-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
20 Nov 2015
Predicting parameters of degradation succession processes of Tibetan Kobresia grasslands
L. Lin1, Y. K. Li1, X. L. Xu2, F. W. Zhang1, Y. G. Du1, S. L. Liu1, X. W. Guo1, and G. M. Cao1 1Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
2Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
Abstract. In the past two decades, increasing human activity (i.e., overgrazing) in the Tibetan Plateau has strongly influenced plant succession processes, resulting in the degradation of alpine grasslands. Therefore, it is necessary to diagnose the degree of degradation to enable implementation of appropriate management for sustainable exploitation and protection of alpine grasslands. Here, we investigated environmental factors and plant functional group (PFG) quantity factors during the alpine grassland succession processes. Principal component analysis (PCA) was used to identify the parameters indicative of degradation. We divided the entire degradation process into six stages. PFG types shifted from rhizome bunchgrasses to rhizome plexus and dense-plexus grasses during the degradation process. Leguminosae and Gramineae plants were replaced by sedges during the advanced stages of degradation. The PFGs were classified into two reaction groups: the grazing-sensitive group, containing Kobresia humilis Mey, and Gramineae and Leguminosae plants, and the grazing-insensitive group, containing Kobresia pygmaea Clarke. The first group was correlated with live root biomass in the surface soil (0–10 cm), whereas the second group was strongly correlated with mattic epipedon thickness and K. pygmaea characteristics. The degree of degradation of alpine meadows may be delineated by development of mattic epipedon and PFG composition. Thus, meadows could be easily graded and their use adjusted based on our scaling system, which would help prevent irreversible degradation of important grasslands. Because relatively few environmental factors are investigated, this approach can save time and labor to formulate a conservation management plan for degraded alpine meadows.

Citation: Lin, L., Li, Y. K., Xu, X. L., Zhang, F. W., Du, Y. G., Liu, S. L., Guo, X. W., and Cao, G. M.: Predicting parameters of degradation succession processes of Tibetan Kobresia grasslands, Solid Earth, 6, 1237-1246, https://doi.org/10.5194/se-6-1237-2015, 2015.
Publications Copernicus
Download
Short summary
We investigated environmental factors and plant functional groups to quantity and identify factors during alpine grassland succession processes. The degree of degradation of alpine meadows may be delineated by development of mattic epipedon and PFG composition. Because relatively few environmental factors are investigated, this approach can save time and labor to formulate a conservation management plan for degraded alpine meadows.
We investigated environmental factors and plant functional groups to quantity and identify...
Share