Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.495 IF 3.495
  • IF 5-year<br/> value: 3.386 IF 5-year
    3.386
  • CiteScore<br/> value: 3.70 CiteScore
    3.70
  • SNIP value: 0.783 SNIP 0.783
  • SJR value: 1.039 SJR 1.039
  • IPP value: 1.987 IPP 1.987
  • h5-index value: 20 h5-index 20
Solid Earth, 8, 827-843, 2017
https://doi.org/10.5194/se-8-827-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
09 Aug 2017
Development of a composite soil degradation assessment index for cocoa agroecosystems in southwestern Nigeria
Sunday Adenrele Adeniyi1,2, Willem Petrus de Clercq3, and Adriaan van Niekerk1,4 1Department of Geography and Environmental Studies, Stellenbosch University, Private Bag XI, Matieland 7602, Stellenbosch, South Africa
2Department of Geography, Osun State University, P.M.B 4494, Osogbo, Nigeria
3Department of Soil Science, Stellenbosch University, Private Bag XI, Matieland 7602, Stellenbosch, South Africa
4School of Plant Biology, University of Western Australia, Crawley WA 6009, Australia
Abstract. Cocoa agroecosystems are a major land-use type in the tropical rainforest belt of West Africa, reportedly associated with several ecological changes, including soil degradation. This study aims to develop a composite soil degradation assessment index (CSDI) for determining the degradation level of cocoa soils under smallholder agroecosystems of southwestern Nigeria. Plots where natural forests have been converted to cocoa agroecosystems of ages 1–10, 11–40, and 41–80 years, respectively representing young cocoa plantations (YCPs), mature cocoa plantations (MCPs), and senescent cocoa plantations (SCPs), were identified to represent the biological cycle of the cocoa tree. Soil samples were collected at a depth of 0 to 20 cm in each plot and analysed in terms of their physical, chemical, and biological properties. Factor analysis of soil data revealed four major interacting soil degradation processes: decline in soil nutrients, loss of soil organic matter, increase in soil acidity, and the breakdown of soil textural characteristics over time. These processes were represented by eight soil properties (extractable zinc, silt, soil organic matter (SOM), cation exchange capacity (CEC), available phosphorus, total porosity, pH, and clay content). These soil properties were subjected to forward stepwise discriminant analysis (STEPDA), and the result showed that four soil properties (extractable zinc, cation exchange capacity, SOM, and clay content) are the most useful in separating the studied soils into YCP, MCP, and SCP. In this way, we have sufficiently eliminated redundancy in the final selection of soil degradation indicators. Based on these four soil parameters, a CSDI was developed and used to classify selected cocoa soils into three different classes of degradation. The results revealed that 65 % of the selected cocoa farms are moderately degraded, while 18 % have a high degradation status. The numerical value of the CSDI as an objective index of soil degradation under cocoa agroecosystems was statistically validated. The results of this study reveal that soil management should promote activities that help to increase organic matter and reduce Zn deficiency over the cocoa growth cycle. Finally, the newly developed CSDI can provide an early warning of soil degradation processes and help farmers and extension officers to implement rehabilitation practices on degraded cocoa soils.

Citation: Adeniyi, S. A., de Clercq, W. P., and van Niekerk, A.: Development of a composite soil degradation assessment index for cocoa agroecosystems in southwestern Nigeria, Solid Earth, 8, 827-843, https://doi.org/10.5194/se-8-827-2017, 2017.
Publications Copernicus
Download
Short summary
Cocoa agroecosystems are a major land use type in West Africa, reportedly associated with the problem of soil degradation. This study developed a composite soil degradation assessment index (CSDI) for determining the degradation status of cocoa soils under smallholder farming systems in southwestern Nigeria. The newly developed index can show early warning signs of soil degradation, which can help farmers and extension officers to implement rehabilitation practices on degraded cocoa soils.
Cocoa agroecosystems are a major land use type in West Africa, reportedly associated with the...
Share