Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.380 IF 2.380
  • IF 5-year value: 3.147 IF 5-year
    3.147
  • CiteScore value: 3.06 CiteScore
    3.06
  • SNIP value: 1.335 SNIP 1.335
  • IPP value: 2.81 IPP 2.81
  • SJR value: 0.779 SJR 0.779
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 32 Scimago H
    index 32
  • h5-index value: 31 h5-index 31
Volume 9, issue 4
Solid Earth, 9, 833–846, 2018
https://doi.org/10.5194/se-9-833-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Solid Earth, 9, 833–846, 2018
https://doi.org/10.5194/se-9-833-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 06 Jul 2018

Research article | 06 Jul 2018

Density structure and isostasy of the lithosphere in Egypt and their relation to seismicity

Mikhail K. Kaban1,2, Sami El Khrepy3,4, and Nassir Al-Arifi3 Mikhail K. Kaban et al.
  • 1GFZ German Research Centre for Geosciences, Telegrafenberg A 20, 14473 Potsdam, Germany
  • 2Schmidt Institute of Physics of the Earth, Moscow, Russia
  • 3King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
  • 4National Research Institute of Astronomy and Geophysics, NRIAG, 11421, Helwan, Egypt

Abstract. A joint analysis of the new satellite–terrestrial gravity field model with recent data on the crustal structure and seismic tomography was conducted to create an integrative model of the crust and upper mantle and to investigate the relation of the density structure and the isostatic state of the lithosphere to the seismicity of Egypt. We identified the distinct fragmentation of the lithosphere of Egypt in several blocks. This division is closely related to the seismicity patterns in this region. The relatively dense and strong lithosphere in the Nile Delta limits the seismic activity within this area, while earthquakes are mainly associated with the boundaries of this block. In the same way, the relatively strong lithosphere in the Isthmus of Suez and northern Mediterranean prevents the Gulf of Suez from opening further. The central part of Egypt is generally characterized by an increased density of the mantle, which extends to the Mediterranean at a depth of 100 km. This anomaly deepens southward to Gilf Kebir and eastward to the Eastern Desert. The average density of the crystalline crust is generally reduced in this zone, indicating the increased thickness of the upper crust. The low-density anomaly under the northern Red Sea is limited to 100–125 km, confirming the passive origin of the extension. Most of the earthquakes occur in the crust and uppermost mantle in this structure due to the hot and weak upper mantle underneath. Furthermore, an asymmetric lithosphere structure is observed across the northern Red Sea. The isostatic anomalies show the fragmentation of the crust of Sinai with the high-density central block. Strong variations in the isostatic anomalies are correlated with the high level of seismicity around Sinai. This tendency is also evident in the northern Red Sea, east of the Nile Valley, and in parts of the Western Desert.

Publications Copernicus
Download
Short summary
We present an integrative model of the crust and upper mantle of Egypt based on an analysis of gravity, seismic, and geological data. These results are essential for deciphering the link between the dynamic processes in the Earth system and near-surface processes (particularly earthquakes) that influence human habitat. We identified the distinct fragmentation of the lithosphere of Egypt in several blocks. This division is closely related to the seismicity patterns in this region.
We present an integrative model of the crust and upper mantle of Egypt based on an analysis of...
Citation